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SUMMARY

The conservation~law form of the inviscid gasdynamic equations
has the remarkable property that the nonlinear flux vectors are
homogeneous functions of degree one. This property readily permits
the splitting of flux vectors into subvectors by similarity trans-
formations so that each subvector has associated with it a speci-
fied eigenvalue spectrum. As a consequence of flux vector split-
ting, ne. explicit and implicit dissipative finite-difference
schemes are developed for first-order hyperbolic systems of equa-
tions. Appropriate one-sided spatial differences for each split
flux vector are used throughout the computational field even if the
flow is locally subsonic. The results of some preliminary numeri-

cal computations are included.
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1. INTRODUCTION

Finite-difference schemes for the conservation-law form of the
unsteady inviscid gasdynamic equations are restricted to a very
limited class of spatial difference approximations in subsonic flow
regions. Only centered difference operators lead to difference
methods that are simultaneously stable for both the positive and
negative characteristic speeds (i.e., eigenvalues) that are asso-
ciated with the spatial flux terms in subsonic flow. Use of any
other class of spatial differential operator requires splitting
the flux terms into components of a restricted type.

There are various reasons for using one-sided spatial differ-
ence operators. For example, for the model scalar wave equation,
one-sided (or upwind) schemes frequently have superior dissipation
and dispersive properties to those of a centered scheme [1,2]. An
explicit second-order accurate upwind scheme can also have twice
the stability bound of a centered second-order scheme [1]. Another
motivation stems from a desire to increase numerical efficiency of
implicit algorithms. For example, an implicit upwind finite
difference algorithm can lead to a lower diagonal banded matrix
that is more easily inverted than the tridiagonal and pentadiagonal
matrices usually associated with centered schemes.

Our objective is to devise a means of splitting the flux
vectors of a hyperbolic system in order to extend the class of
allowable spatial differencing schemes to achieve more robust
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algorithms and to improve computational efficiency. As in earlier
related work [2,3], we restrict our attention to the inviscid gas-
dynamic equations in conservation-law form and take advantage of

the fact that the flux vectors are homogeneous of degree one. We
have not investigated first-order conservative systems that are
nonhomogeneous. The basic ideas used here, however, apply to first-
order nonconservative hyperbolic systems of equations. A related
explicit algorithm for the equations of gasdynamics written in
nonconservation law form was recently proposed by Moretti [4].

In this paper we first review the restrictions placed on the
spatial difference operators of hyperbolic systems that have both
positive and negative eigenvalues. Using the one-dimensional
inviscid equations of gasdynamics, we then develop a methodology
for splitting the equations into components of the same character-
i=tic behavior. Both explicit and impilcit numerical algorithms
are devised and tested for the split system of equations. The

methodology and algorithms are then extended to multidimensions.
2. MOTIVATION AND BACKGROUND

In this section we review the restrictions placed on spatial
difference approximations by the characteristic speeds (eigen-
values) of a hyperbolic system.

To illustrate the basic notions we consider a one-dimensional

system of conservation laws

4,
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T (2.1)

where U and F are m-component column vectors. The system (2.1)

can be rewritten as a quasi-liaear system

au u
5t + A(U) % o, (2.2)

where A 1is the Jacobian matrix J3F/3U. The system (2.2) is

hyperbolic at the point (x,t,U) if there exists a similarity trans-

formation such that

Q-laQ = A = A3 (2.3)

| o]
where A 1is a diagonal matrix, the eigenvalues A; of A are

real, and the norms of Q and Q‘1 are uniformly bounded.

For the purpese of a linear stability analysis, we assume

that the ~oefficient matrix A is "frozen," that is, constant.

By virtue of Eq. (2.3), Eq. (2.2) can be transformed to the

uncoupled system

du Ju

L 2

3t+Az_8;--o’ 2-1’ 2, 3,o-o,m (2.4)

by defining a new vector u = (u;, Uy, Uzs « « o, um)t = Q" lu.

Consequently, when analyzing the stability of numerical algorithms
as applied to the linearized version of the system (2.2), we need

only examine the scalar Eq. (2.4). For simplicity, the subscript

£ will be dropped in the remainder of this section.

6
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To analyze the effect of one-gsided spatial differences on
stability we leave the time variable continuous and discretize the
spatial variable as x = Xy = jox. Let 3u/3dx be approximated by
the first-order one-sided difference quotient

V,u
Ju xJ
3x j R TR COR 2.9

where V, 1is the classical backward-difference operator

quj =y (2.6)

37 %

This spatial discretization reduces Eq. (2.4) to a system of first

order ordinary differential equations:

du u; ~ u
3 3 j-1
Tt + 2 ™ =0, (2.7)

For simplicity, assume spatially periodic boundary conditions
and look for a solution of the form

uy(t) = v(t)elkdx (2.8)
where v(t) is the Fourier coefficient, i = J:I, and k 1is the
wave number. By inserting Eq. (2.8) in Eq. (2.7), one finds that

the Fourier coefficient satisfies the ordinary differential

equation
dv
at " 9V (2.9a)
where
0= - A 2 sinz(g) + 1 8in 6 8 = kix . (2.9b)
Ax 2 !

T

R



The solution is v = Ce’% so for Eq. {2.9a) to have a bounded solu-

Lo

tion, the real part of o0 must satisfy Re o ¢ 0, which requires §3

that A > 0. -
Instead of the backward-difference operator (2.6), let du/3x A
be approximated by
ul L L, + 0(ax) (2.10)
ax 3 Ax "x7J i

where A, 1is the forward-difference operator

IR

Axuj = uj+l - uj . (2.11)

P i

I1f we repeat the Fourier stability analysis, we find

g = f% [2 sinz(%) - 1 sin 6] » 8 = kix . _(2‘12)

|
Again, for stability, Reo 5 0, and we now require that ) < 0.

In summary, for one-sided spatial difference approximations
we have the following result: If 3u/dx 1is approximated by the
backward-difference operator (2.6), then the resulting ordinary
differential equation (2.7) will be stable if and only if A > 0
(i.e., the wave travels to the right). Conversely, if 3u/3x is
approximated by the forward-difference operator (2.11), the result-
ing ordinary differential equation (2.7) will be stable if and
only if A < 0 (i.e., the wave travels to the left). In general, i

no conventional banrkward, forward, or unsymmetric operator such as

-2u - 3uy; + 6u -u
Y I | AR I . 3
= j e + 0(Ax°) (2.13)

P PAT R et e o st
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will yield an ordinary differential equation which is simultaneously
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stable for both positive and negative eigenvalues. Although this

statement is justified in Appendix A, its correctness is apparent
from the fact that any noncentered spatial-difference operator will "
yield an eigenvalue (see, e.g., Eq. (2.9b)) with a nonzero real i
part whose coefficient is the eigenvalue A. Hence, the real part
cannot satisfy Reo < 0 for both positive and negative A.
Returning to the system (2.1), it is clcar that if a single
noncentered difference operator is used to approximate OJF/93x
when the eigenvalues of the Jacobian matrix A are of mixed zign, ;

then the resulting time-continuous method will always produce a

numerical instability.
3. ONE-DIMENSIONAL EQUATIONS OF GASDYNAMICS

In one spatial dimension the inviscid equatiors of gasdynamics

can be written in the conservation-law form (2.1) where

4] m
Us=|{m F(U) = | (m*/0)+p |, (3.1a,b)
e (e + pIm/p

and where m = pu. The primitive variables of (3.1) are the den-
sity p, the velocity u, and the pressure p. The total energy
per unit volume, e, is related to the internal energy per unit
mass, €, by

e = pe + pu?/2 = pe + m?/(2p) . (3.2)



The system is completed with an equation of state
p = plp,e) . (3.3)
For the case of a perfect gas,
p= (y - e, 3.4
which can be rewritten using (3.2) as
p=(y - 1)e-m?/(2)] , (3.5)
where vy 1s the ratio of specific heats.
By using (3.5), the flux vector F(U) can be rewritten as
m
F(U) = |[(y - De + (3 - In?/(20)] . (3.6)
yem/p - (y - 1)m3/(2p?)

The Jacobian matrix A = 3F/3U 1is easily computed and found to be

0 1 0
A= (y - 3*u?/2 (3-y)u y-1]. 3.7
(y - Dud - yeu/p  ve/p-3(y~-1)u?/2 Yu

The eigenvalues of A are

Al.u, Az-u+c, As'u-c, (3-8)

where ¢ = (Yp/p)”2 is the local speed of sound. For subsonic
flow |u] < c, and the eigenvalues are of mixed sign since u + ¢
and u - ¢ are of opposite sign.

The inviscid equations of gasdynamics have the rather remark-
able property that if the equation of state has the functional
form

p = of(e) , (3.9)

10
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then the nonlinear flux vector F(U) is a homogeneous function of
degree one in U; that is F(aU) = oF(U) for any value a. The
equation of state (3.4) is clearly a special case of (3.9) and the
fact that F(U) is a homogeneous function of degree one 1is obvious
by inspection of the flux vector (3.6). By application of Euler’'s
theorem on homogeneous functions (see, e.g., [5]) there follows

F=AU, (3.10)
where A 1is the Jacobian matrix 3F/3U. One can readily verify
the above equality by using Eqs. (3.7) and (3.1a) and making the
indicated matrix-vector multiply. The flux vectors in two and
three spatial dimensions also have the homogeneous property.

If F usatisfies the homogencous property and A has a com-
plet: set of linearly independent eigenvectors, then the flux vec-
tor F can be split into subvectors, each one of which is asso-
ciated with a tailored set of eigenvalues. In particular, the
eigenvalues associated with one subvector can be all positive,
those associated with the other all negative. These subvectors can
then be differenced individually with an appropriate one-sided
scheme in conservation-law form. The details for the one-dimensioral

case are outlined in the following section.

11
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4, FLUX VECTOR SPLITTING FOR THE ONE-~-DIMENSIONAL EQUATIONS

OF GASDYNAMICS

Consider Eq. (2.1) with U and F defined by Eq. (3.1). The
flux vector F(U) has the homogeneous property defined in the pre-
ceding section and consequently F can be split iuto two p-rts
as [2], [3]

F=F+F , (4.1)
where F' corresponds to the subvector associated with the posi~
tive eigenvalues of A, and F  corresponds to the negative eigen-
values. This splitting is derived as follows. By virtue of (3.10)
and (2.3),

F =AU = Q\Q"lu , (4.2)
where the diagonal elements of A are given by (3.8).

Any eigenvalue A2 can be expressed as

Ap = Af + A7, (4.3)
where
PRV 12, ] g = Iyl
Ag =5 Ay =5 (4.4)

so that if Ay > 0 then At = kz, AE = (0, with the converse result

for Ay < 0.
Using the above formulas, we split the diagonal matrix
A=at+n, (4.5)
where AT and A™ have as diagonal elements XI and XE, respec~

tively. Equation (4.2) can be rewritten as

12
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F=qut+ Aoty

= (At + AU
=Ft+F, (4.6)
where
At =qatgm!, A" = qaQ! (4.7)
FH = atu F- = A7U , (4.8)
and
A=At +4A . (4.9)

The eigenvalues of At are nonnegative and those of A~ are non-
positive. For the inviscid gasdynamic equations, the matrices Q
and Q"! are given by
Q=M , Q!=r11IM1, (4.10)
where M and T and their inverses are given in [2] for one and
two space dimensions and in [6] for three space dimensions.
The eigenvalues given by Eqs. (3.8) are split according to

Eqs. (4.3) and (4.4) into

)
+ u+ ju - u - [u
M3 MET3
+ _utc+ lu+ec] -_u+c-lu+ ¢l
*2 2 A7 > b (4.11)
A+ duU=-c+ lu - ¢| AT == C - ]u - c]
3 2 3 2 '1

The corresponding subvectors F' and F~ for the special case

0 sugc are

13



i 2yu + ¢ - u 7
Ft = '2% 2(y- Du? + (u+c)? ;
3 - 2
L(Y_l)us + (u+2C) + 3 2\((\)((34.1.):)(:
- e 1 - (4.12a)
F o= -29; (u-c)? ’

(u-¢)3 + (3-Y)(u=-c)ec?
2 2(y - D

or, if u > ¢,
FF=F, F =0, (4.12b)
where F 1is (3.6). The subvectors (4.12a) can be obtained, by a
tedious calculation, directly from (4.6) or from the generalized
flux vector (4.19) given at the end of this section.
The eigenvalue splitting (4.4) is not unique and other split-
tings into positive and negative parts are possible. For example,

consider the splitting given by [3]:

4+ _u+ |u - _u-{u l

Al = 5 Al = 2 .

Vet s AT = A t (4.13)
2 1 2 1 ’ .
+ o+ - _ -

A3 =] A3 = A ¢

which satisfies (4.3) and the sum AI + AE = )y sgives the physi-
cal eigenvalues.
A more general class of splitting is given by
B8

o
A2=A2+>\2+..., (4.14)

14
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with corresponding subvectors

F=r+F +. .. (4.15)

?
where 12 is not necessarily split into positive and negative

parts. For example, the sound wave or pressure term contribution
to the eigenvalue could be split from the flow velocity. 1In the

general notation (4.15) with a =u and 8 = c, one has

)
Ag =u A? =0,
Ay =u  A;=c, @ (4.16)
u C__
A3 =u A3 = - ,J

and the subvectors are given by

) K
FP=w=ulm], *F=]p]. (4.17)
e | up,

This splitting, in two and three dimensions, has been used in

parabolized Navier-Stokes calculations [7].

Since several splittings are possible, it is convenient to
define a "generalized" flux vector from which any split subvector
can readily be computed. The generalized flux vector is defined by

& =ity , (4.18)
where A is the diagonal matrix

Ay

15
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whose eigenvalues AE are arbitrary. A direct calculation for

the one~dimensional gasdynamic equations yields

A

2(y - DAy + A, + A,

.ﬁi = = z(y-l)ilu + iz(u+c) + Xa(u-c) , (4.19)

a ~

- ) A3
L(*y—l)Alu2 + 5 (u+c)? + 5 (u-c)2 +w

-

where

(3 - NQA, + 1,)e?
w = 3y = 1) . (4.20)

The vector 3& has a rather striking structure. One can
easily verify that 1f the iz are replaced by theé physical eigen-
values (3.8), then (4.19) reduces to the physical flux vector (3.6)
which, of course, must follow by Eq. (4.2). Flux formulas for any
splitting follow directly by inserting the appropriate split
eigenvalues (4.14) into Eq. (4.19). 1In particular, to arrive at
the splitting defined by Eq. (4.11), Ft follows directly by
inserting AI into Eq. (4.19), and F~ follows by inserting A;
into Eq. (4.19). The matrices A% and A~ can be obtained from
Eq. (4.7). The other splittings are obtained in a similar way.

The generalized flux vectors SEI, 8&11 for two and three
spatial dimensions are given in Appendix B. From these generalized
vectors, the flux vectors for any eigenvalue splitting can easily
be computed for the inviscid equations of gasdynamics.

In concluding this section we remark that, in general,

At # oFT/3U and A~ ¢ 3F/3U. However, in all the numerical tests

16
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that we have made, 3FY/3U does have positive eigenvalues and
9F~/3U has negative eigenvalues; these roots, however, are not

identical to those of At and A™.
5. ALGORITHMS FOR ONE SPACE DIMENSION

In this section we illustrate several numerical algorithms
that can be constructed for the one-dimensional equations of gas-

dynamics by use of flux vector splitting.

Explicit Methods

MacCormack's scheme [8] for the one-dimensional system of

conservation laws (2.1) is

n

— V<F

n+1 n X'}

Uj Uj - At Ax ’ (5-1)

n+l
—_— AF

n+l _ 1 o ntl n, At XxJ

Ui 2 (Uj + Uj) 7 Ax° (5.2)
where U? denotes the finite-difference approximation to U,
F? = F(U?), etc., and the forward and backward difference oper-

ators are defined by Eqs. (2.11) and (2.6).
Since the predictor (5.1) is one-sided (upwind), the corrector

(5.2) can be modified as

- szn v Fn+1
n+tl 1 ,.n n+l At XJ At x
AR AR Rl v rad S R

to obtain a completely upwind second-order scheme [l]. A necessary
local condition for the stability of the scheme Eqs. (5.1) and (5.3)
is that all the eigenvalues of the Jacobian matrix A be positive.

17
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MacCormack's scheme can be modified by using a forward differ-
ence in the predictor, and a backward difference in the corrector.
Likewise, the upwind scheme (5.1), (5.3) can be altered by replac-
ing V by 4 and v2 by -A2. In this case a necessary condition
for the stability of the altered scheme is that all the eigenvalues
of the Jacobian matrix be negative.

The eigenvalue splitting (4.11) or (4.13) of the previous
section can be used so that a split upwind version of MacCormack's
scheme can be used when the eigenvalues are of mixed sign, that is,

in a subsonic region. The split upwind algorithm is

+.n - n
e V. (Fs) Ay (F3)
n+1 n X3 X'
Uj = Uj - At IR At I (5.4)
+ +.n+]
G L n g A v2(F" . Ty (F)"
3 2 ] h| 2 Ax Ax
2 p—y\0 - ;‘ﬁ
Lo (Ax(Fj) 8, ) 5.5
2 Ax Ax ' *

According to linear stability theory, the scheme (5.4) and (5.5)
is stable if and only if
+
[A lat/ax < 2

for all eigenvalues A, where Xl = A; + A, are the eigenvalues

L

=+

of the Jacobian matrix.

The MacCormack scheme, (5.1) and (5.2), is a symmetric scheme
in the sense that the grid point cluster is symmetric about the
center point 3 at the completion of the corrector step. A sym=-

metric (explicit) second-order scheme has a predominantly lagging

18
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phase error and an upwind scheme has a leading phase error [1].
The opposite phase error of the symmetric and the upwind schemes
suggests that a considerable reduction of phiase error would occur
if the two schemes were alternated on successive time steps. A
temporal switching of schemes is the basis of Fromm's method of

zero-average phase error [9].

Implicit Methods

A noniterative implicit finite-difference scheme, for a one-

dimensional system of conservation laws is [2]

6At ny,.n_ At n E n-1
(1 e 3 éxAj)AUj =-13¢ 9 Fj T3 AUJ. , (5.6)
where I is the identity matrix, AU" = u“+1 -U", A is the

Jacobian matrix, and §, 1s an appropriate spatial difference
operator.* In general, the spatial derivative approximations on
the left- and right-hand sides of (5.6) can be differeut. The
parameters 6,f determine the particular time~differencing
approximation used. Scheme (5.6) includes three well<known

implicit formulas

6 = %-, E =0 trapezoidal formula;
6 =1, £ = 0 backward Euler;

g =1, £ = %- three~point backward.
For a more general formulation that includes all linear multistep

(time-differencing) methods see [10].

*In Eq. (5.6) and in similar equations throughout this paper,
notation of the form (I + AtdxA)AU denotes AU + Atéx(AAU).

19




With use of the split flux vectors (4.7), one-sided spatial

difference approximations are possible. For example,
_bAt -n n
[ T+e (vaj + 0,87 )]Auj

( At )(6bF":'|“ + 5fF'.|“) + o ™!
xj x j

1+¢ 1+¢& 773
where
x 3 28x
and
X j 28x

(5.7)

(5.8)

(5.9)

are second-order accurate one-sided difference operators.

The splitting F = F+ + F allows an approximate factoriza-

tion of the left-hand side of (5.7) into the product of two

operators as

(I + 1°it€ Y * )(1 ¥ 3 + E AxAjln)Anj

- At b+n_  fo~n 3 n-1
- )(F] 1" + 6 Fy ") + g auyTh

1+§ 3

This scheme is implemented by the sequence

(t+1r+ VX“Jln)AU* (1*5)(“?}'“ + &8 In) T

6At n
(1 T+ 4l )AU - auy

e o 4 a?

Y 3 * Ay .

20
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(5.11b)
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Unlike Eq. (5.7), the solution of Eq. (5.10) does not require
the solution of a block tridiagonal system because both Eqs. (5.1la)
and (5.11b) lead to hlock bidiagonal systems. For example, by

writing out (5.11b)

8 At -] oAk 8 At -
[I ST Eax A ]Auj AUy = T T 5x Byn

we see that the solution is achieved by a right to left sweep

n,.n
) AUj+1 s (5.12)

(decreasing j) with the inversion of the 3 x 3 matrix in the
parenthesis on the left required at each mesh point. The eigen-
values of this matrix are greater than or equal to unity and con-
sequently the matrix is nonsingular for any Af.

The scheme (5.10) is second-order accurate, dissipative, and
unconditionally stable for 6 = 1, = 1/2 (according to linear
theory). 1In one spatial dimension, computational efficiency can be
lost in comparison to Eq. (5.6) with &, a three-point central
operator. This is chiefly because A+, A, F+, and F  are costly
to form. In multidimensions, however, an advantage is achieved by

avoiding the solution of block tridiagonal systems.
6. NUMERICAL EXPERIMENTS IN ONE DIMENSION

The numerical solution of a one-dimensional shock-tube flow
was chosen to judge the viability of the numerical algorithms given
in the previous section. As a model problem, consider a tube of
large extent in which a diaphragm reparates a perfect gas at rest
with different static pressures but at a uniform temperature.

21



With rupture of the diaphragm, an expansion propagates into the

high-pressure gas, while a shock wave, followed by a contact sur-
face, propagates into the low-pressure gas. Details of this flow
are described in standard texts (e.g., Liepmann and Roshko [11]).

In our calculations, the initial pressure ratio across the
diaphragm is taken ag 5 to 1. The solution results for various
methods are shown in Figs. 1 to 5 in terms of the nondimensional
density, p/po, where p, 1s the initial high-density gas. In all
cases, the same spatial grid and time step are used and
ot/ox = 0.2.

The results for the explicit upwind scheme (5.4), (5.5) are
shown in Fig. 1. Also shown are the exact locations of the shock
and contact waves and exact constant density levels. The initial
location ot the diaphragm is taken at x = 3,0. Overall, the
numerical accuracy is good and although the contact wave is
smoothed out, the overshoots are moderate. For comparison pur-
poses, the results for this flow obtained using the conventional
MacCormack scheme are shown in Fig. 2. The accuracy of the two
schemes 1s comparable, with the exception of a large spike in
density as a result of start up. MacCormack has shown that the
addition of a dissipation term, especially in expansion regions,
can control such spikes [12]. We did not program this versionm,
however, in order to illustrate the effectiveness of alternating

the centered and upwind schemes.
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In Fig. 3 we show the solution obtained using the upwind scheme
(5.4), (5.5) to advance the solution for odd values of the time

index n and using the MacCormack scheme (5.1), (5.2) for the even
values of n. The results of this combined algorithm are clearly
superior to the application of either of its constituente. The
overshoots are much reduced, and the jumps are crisper.

Results for the implicit upwind scheme (5.10), are shown in
Fig. 4. Here, trapezoidal time-differencing was used. Again the
results are good and quite comparable to those obtained witlh the
explicit procedure. Finally, in Fig. 5 we show the results obtained
from the "conventional"” implicit algorithm using centered spatial
differencing and three-point backward time~differencing. A small
amount of fourth-order numerical dissipation was also added [13].

Overall, the results are again quite comparable.

7. FLUX VECTOR SPLITTING IN TWO SPACE DIMENSIONS

In two spatial dimensions, a hyperbolic system of conservation

laws has the form

U , aF , 3G
at+3x+3y-o’ (7.1)
where for the inviscic gasdynamics equations
p - r - - W
p pu pv
m pu? + p puv
U= s F= s G = y (7.2)
n puv pve + p
e u(e+p) v(e+p)
b o L .J L -
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where m = pu, and n = pv, The primitive variables of (7.2) are
density p, velocity components u and v, pressure p, and total

energy per unit volume e. The equation of state 1is

2 2
p=(y - 1)[e - —;-(%— + %—)] (7.3)

This system can be rewritten in quasi-linear form as

Ay, , 3, .3y
e TA By

=0, (7.4)
where A and B are the Jacobian matrices
A = 3F/3U , B = 3G/a3U , (7.5a,b)
As in the previous section, we use the fact that F(U) and G(U)
are homogeneous functions of degree one in U and consequently
F =AU, G = BU . (7.6a,b)

For the inviscid equations of gasdynamics, the matrices

A and B can be diagonalized as

- o -
Q 'AQ = ¢ \ (k; =1, k, =0)  (7.7)
uvc
- © U= Cu
v
Q"!8Q = v . ° ] (ky =0, k, = 1)  (7.8)
v*C
L © v- oo

where ¢ is the local speed of sound. The matrices Q and Q~!,
as defined in Appendix B, are functions of the two parameters
ky»k, and of the dependent variables. The values of (kl,kz)
indicated in the parentheses of (7.7) and (7.8) are the value:
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that diagonalize A and B. Since A and B do not commute, they
cannot be diagonalized by the same similarity transformation.

The flux vectors F(U) and G(U) for the inviscid equations oi
gasdynamics can be split into subvectors, each of which depends on
eigenvalues of the same sign exactly as in the one-dimensional

case. A generalized flux vector
F =gl (7.9)

analogous to (4.19) tor one space dimension, is given In Appendix B
for two space dimensions. (For completeness, a three~-dimensional
version is also given.) By using the generalized flux vector, one
can compute Ft. Gi for any desired eigenvalue splitting. For

example,

+ o+ o+

*
Flom & (k= 1, ky v 0, A7, Mgy A) (7.10)

where 3{1 as given by Eq. (B9 of Appendix B is evaluated using
the particular values ofi the parameters (kl,kz) and (Al, Ays A)

4

indicated in the parentheses of Eq. (7.10). The positive eigen~

values At. A:. X: are defined by Eq. (4.4), where Ay = u,

A3 =y +c, A“ =y - C.
8. ALGORITHMS FOR TWO SPACE DIMENSIONS

Just as in the one-dimensional case, the split subvecto.

forms allow construction of novel numerical difference schemes.
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Explicit Methods

The natural extension of the upwind scheme (5.4), (5.5) to two
spatial dimensions is

ol n

%$=ULk-%Pﬁ§$w+VJ%$W] P(%kﬂ+V(%k)]
(8.1)

U?f; - 3 U;‘;T-li + UL - [A (. k)n+1 + v (Fj k)"‘_J’T:|
[% (6 k)n+1 + Vy(cj’k)gxi] - vx[§§(F;’ ) - BEF] ) ]
- v, [9266] ™ - 2266 k)“]} : (8.2)

where x = jdx, y = kdy, and v, = At/Ax, v, = At/Ay. Although

y
this upwind version of MacCormack's scheme requires considerably
more work than the conventional scheme, it is a more robust algo-
rithm if the solution exhibits large spatial gradients. In addi-
tion, as in the one-dimensional case, a very effective algorithm
is obtained when the upwind scheme is alternated with the conven-
tional MacCormack scheme on successive time steps.
If only first-order time accuracy is required, a simple

explicit scheme is given by

n+l n
Ui ™ Uk T

f -

At(GF + 6. F +6G +cc)| (8.3)

1Lk’
where 6b and Gf are defined by (5.8) and (5.9). Such a scheme
is practical for steady state problems and it could be the basis

»

of a point relaxation algorithm.
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Implicit Methods

The natural extension of (5.7) to two spatial dimensions is
_eat n - n + n
+ +
[I T+¢F E (V A kl AxAj,kl + vyBj,kI + A Bj k| )]Auj,k

At n, b+ n £ n-1
= - + - —
(1+a)(xam' 5 5ol 86 " GGLkl)+h+€yghk'

(8.4)

{

The left-hand side of the scheme (8.4) can be factored into

the product of two operators as

+ n - n - n n
I+h(V A +V B ) [I+h(A A7 +A B ) AU™ . = RHS (8.4
[ jkl ya,kl ] stkl }’J:kl jsk (8.4,

where

_bat

h = T+t (8.5)
and "RHS (8.4)" denotes the right-hand side of (8.4). This
scheme can be implemented by the sequence
+
[I + h(vaj, "+ v Bj kl )]AUj = RHS (8.4) , (8.6a)
[I+h(AA ™ + & B [)AU“ = au* |, (8.6b) :
ik y i:k 3k ik :
n+l n
U =0 + A .
BT Vet e @60

Compared to the class of centrally-differenced implicit
schemes [2, 14, 15] the algorithm (8.6) has both advantages and
disadvancages. Equation (8.6a) requires the solution of a sparse
block lower diagonal matrix and Eq. (8.6b) requires the solution
of a sparse block upper bidiagonal matrix. Consequently, the com-

putational inversion work is much less than that of solving two
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block tridiagonal matrix sequences, as a conventional central-
differenced algorithm would require. Moreover, in three dimensions
the plus-minus split subvectors can still be approximately factored
into just two factors — a sparse upper block~triangular matrix and a
sparse lower block-triangular matrix. 1In three dimensions, the use
of central spatial differences requires the inversion of three

block tridjagonal sequences. The upwind differences are also
dissipative, so it is not necessary to add higher-order dissipa-
tion terms.

On the other hand, twice as many Jacobian matrices and flux
vectors have to be formed with the plus-~minus splitting. Further-
more, these are more involved to form than the usual Jacobians,
although with careful programming certain terms in Ai and Bi as
well as Ft and Gi can be formed simultaneously.

Other difference schemes can be formulated that use the plus-

minus flux vector splitting. An implicit second-order accurate

scheme is given by

+ n - n + n - nf,.n _
[I+h(VxAj,k| +o 8 " +0 By ] )] [I+hAxAj’k| ]AUj’k—RHS (8.4) .
(8.7)

This factorization does require a block tridiagonal inversion in

the y-direction. Consequently, viscous terms in the y-direction

RETR

can readily be included into the implicit operator.

A semi~implicit, first-order accurate scheme in time is

et PEres S e s 4

obtained from Eq. (8.7) by dropping the factor (I + hAxAS kln) and
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letting 6 =1, £ = 0. Indeed, once the flux vectors are broken
into subvectors, a large number of difference schemes can be devised
to achieve possible advantages in numerical accuracy, robustness,

computational efficiency, and storage.

9. NUMERICAL EXPERIMENTS IN TWO DIMENSIONS

Numerical calculations of model problems in two dimensions
have been used to verify the stability and practicality of the
algorithms of the last section. For example, the explicit algo-
rithm (8,1) was tested on a square uniform grid with periodic bound-
ary conditions. Waves were followed in time for arbitrary (non-
physical) initial data. Although no results are shown, it was
noted that the upwi~d scheme required about 3 times more computa-
tional time than standard MacCormack scheme.

The implicit algorithm (8.5), was tested on a simple biconvex
airfoil with linearized boundary conditions. A typical transonic
airfoil solution result is shown in Fig. 6 for a free-stream Mach
number of 0.84 and a body thickness ratio of 11.4. The eigenvalue
splitting (4.4) was used. Also shown are the calculated results
obtained from the conventinnal implicit algorithm using central
differencing. Both calculations use the same grid and boundary
conditions. The grid is clustered in x and y and uses 50 x 28
points. The results shown are in good agreement for this coarse

grid.
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The numerical calculations illustrated two weaknesses of the
upwind scheme that have now been essentially corrected. Whenever
an eigenvalue changes sign, it is either suddenly set to zero or
is suddenly nonzero. Elements of any one subvector are suddenly
changed and the local accuracy of the difference approximation can
suffer. In Fig. 6 one notices a small oscillation in the data at
the sonic line where the (u - c¢) eigenvalue changes sign. This
oscillation would actually appear much worse if it were not for the
blending terms that are added to the eigenvalues to smooth out

sudden changes. An example of blended terms are the following:

+ u+ (u - u - lu

>‘1 = 2 + E:l )\1 = 2 - El
+_u+c+ Iu + c[ - u+c¢c - Iu + cL

X3 = 3 + €, A3 = 3 - g,
+ _u-c¢+ iu - c[ - u-c- [u - c[

Ay = 3 + g, kh = 2 =€

where €, are small positive numbers which smoothly approach zero
as IAQI increases. We remark that nonconservative formulations
are not afflicted with flux vectors that have discontinuous
derivatives.

As previously noted, A+ # 3F+/3U, although the two matrices
share eigenvalues of the same sign. For the shock-tube calcula~-
tions the time step was limited by accuracy coasiderations and no
difficulty was encountered in using A+ and A~ on the left-hand
side of the implicit algorithm. In the steady state airfoil cal-
culation we did find that using At instead of apt/au imposed
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explicit-like time-step restrictions. Use of the true Jacobian
resulted in a more robust algorithm. This is quite a different
result than was found with convection-sound speed splittings [3]
in which the similarity matrix had identical stability properties

to the actual Jacobian.
10. GENERAL CONSERVATION FORMS FOR HYPERBOLIC SYSTEMS

The implicit algorithms developed in the previous sections
were for a Cartesian coordinate system; however, computational
fluid dynamical problems involve flows over (or through) arbitrarily
shaped bodies.

In this section we show that the previously derived algorithms
can be made applicable to general flow fields. One method of
handling complex geometries is to map the physical plane — for
example, an airfoil in two spatial dimensions — into a rectangular
computational plane. The desired transformation has the properiy
that the airfoll surface is coincident with coordinate lines in the
physical plane, and the airfoil surface lies along the boundary of
the rectangular computational plane. The transform should also
cluster grid points to regions where large spatial gradients occur.
Since the actual numerical computation is carried out in a trans-
formed rectangular plane with a uniform mesh, we review in this
section the form of the transformed conservation-law equations and

the corresponding difference algorithm.
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It can be shown [16] that the conservation-law form (7.1) is
retained under an arbitrary time-dependent coordinate transformation

£ = &£(x,y,t) , n = n(x,y,t) , T=t. (10.1)

In particular, one obtains

oU , oF , 3G _
sttt =0 (10.2)

where U = U/J and the flux vectors F and é are linear combina-

tions of the vectors of (7.2):

F=(gU+ET+E0)/I (10.3a)
G = (ﬂtU + an + nyG)/J (10.3b)

and
3= (10.4)

3(x,y) Xy yx
is the Jacobian of the transformation. It is important to note
that Cartesian components of velocity and momentum are retained in
(10.2). The equations in three spatial dimensions are straight-
forward generalizations of the above equationms.
As in the previous sections, we use the fact that F(U) and

G(U) are homogeneous functions of cegree one in U. As a

consequence
B« purny - B = D, (10.5a)
ES}’)- = G(U/J) = 6(¥) = B , (10.5b)
where

A=3F(0)/30, B = aG(0)/a0 .

32

PRV B L s e TR

. b T e =

R N -
.o Coa .

s



LTI A, -

T .

et

£

(Note that A and B are the Jacobians for Cartesian coordinates
defined by Eq. (7.5).)

Hence, Eqs. (10.3) can be rewritten as

>

= (koL + k),A + k,B)0 ,
(10.6)

[»}]

= (kZOI + k21A + kzzB)U s

where k,, = £,., etc., are the scale factors. The generalized
flux vector 5&1 defined in the appendix can be used to calculate
ft, ét for any arbitrary eigenvalue splitting. This is apparent
from Eqs. (B7), (B6), and (Bl) of Appendix B because the coeffi-
cients k,; and k2 of Eq. (Bl) are arbitrary real numbers, which
for the present application are taken to be the scale factors

Et, £x, Ey’ etc. Finally, since the conservation-law form is

retained by (10.2), the numerical algorithms of Sec. 7 are

directly applicable to general conservation forms.
11. CONCLUDING REMARKS

A hyperbolic system of conservation laws whose associated
Jacobian matrices have positive and negative eigenvalues can only

be spatially differenced as a system with centered operators.

However, splitting the flux vectors into subvectors whose associated

eigenvalues are of the same sign allows use of one-sided (upwind)
operators.

In this paper, we have made use of the fact that flux vectors
of the inviscid gasdynamic equations are homogeneous functions of
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degree one to construct flux vector splittings. As a consequence,

new explicit and implicit dissipative difference methods are

devised which are more robust and computationally efficient than

conventional spatially centered schemecs., Preliminarv computational

experiments show that the new methods are feasible, although

clearly both additional analysis and numerical testing on ''realistic"

problems are required.

APPENDIX A: INSTABILITY OF ONE-SIDED SCHEMES FOR HYPERBOLIC

SYSTEMS WITH EIGENVALUES OF MIXED SIGN

Here we examine the hyperbolic system of equatibns

U 1] '
3t+A3x=0, (A1)

where A 1s a constant matrix with both positive and negative
eigenvalues. In Sec. 2 it was shown that approximating 23,U with
either V,U or 4,U must always lead to instability for the time-
continuous svstem of equations. In this Appendix, we argue that
all conventional backward, forward, or biased (e.g., Eq. (2.13))
finite-difference approximations to 23,U will be unstable if A
has both positive and negative eigenvalues.

As shown in Sec. 2, Eq. (Al) can be transformed into an
uncoupled system of scalar wave equations of the form

Ju Ju
e T 3 =0 (A2)
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where ) 1is either positive or negative. With introduction of a

spatial-difference approximation, Eq. (A2) is replaced by a system
of ordinary differential equations
du

->
d_t'"“"'?’ (A3)

where u = (u, up, uz, « « oy Ugs .o .)t, uy = u(jax), f contains
known boundary data (if any) and M 1is a constant coefficient
matrix. For example, if 3, is approximated by V, with given

boundary data on the left-hand boundary, then

-1 ] PuJ
-1 1 0
-1 1 C:) 0
-1 1 A 0
M--A—x- . ) ’ ?-—A; . . (A4)
O :
L -1 1] L"

If 3, is appreximated by Eq. (2.13), then

-3 6 -1 [2u,]
-2 -3 6 -1 O 0
A - A
M= - -2 -3 6 -1 , 3 i A K (AS)
. L] . . 0
L - . L ] I- L:-

In this latter example the values of M would change to accommo-
date an alternative choice of differencing at the right-hand

boundary.
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The solution of Eq. (A3) is (ef. [17, 18])

-
4= et ﬁo + particular solution .

If M has an eigenvalue with a positive real part, then eMt > @

as t > and the solution is unbounded. However, any conven-

tional backward, forward, or biased differenced scheme leads to a

matrix M with a nonzero real trace. The trace contains A as a

multiplier and the sum of the eigenvalues of M equals its trace.

Consequently, for either the case A positive or A negative,

eMt +» as t += gince at least one eigenvalue will have a

positive real part. Thus, conventional backward, forward, or

biased difference schemes are unstable.

The above argument, showing instability, is not altered by

boundary conditions since they will only affect a few end-point

elements of the matrix M. For a large matrix (refined spatial

grid), these few elements cannot alter the sign of the trace. Note

that the use of central spatial differencing, which can be stable,

leads to a matrix M with zero trace. We remark also that a non-

conventional upwind differencing such as

qu| L 147t -2

X Ax :

3

also has a zero trace and thus must be proved to be unstable by

another argument.
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APPENDIX B: GENERALIZED FLUX VECTOR FOR TWO AND THREE SPATIAL

e ol W

DIMENSIONS s

Two-Dimensional Case

The system of conservation laws (7.1) can be rewritten in
quasi-linear form (7.4). Define a matrix P as
P = kA +Kk,B, (B1)
where k, and k, are arbitrary real numbers. The system (7.4) is
hyperbolic at the point (x, y, t, U) if there exists a similarity

transformation such that

-A q
1 \ 0
2
Aj
QlpQ = = A, (B2)
0 .
xtl!
L -

where the eigenvalues ); are real and the norms of Q and Q!
are uniformly bounded.

The formulas in the remainder of this appendix pertain to the
inviscid equations of gasdynamics for a perfect gas. The Jacobians
A and B are 4 x 4 matrices and Q and Q’1 can be written as

Q=Mr, Q¢=TIMND, (B3)
where M, T, and their inverses are given in the appendix of [2].
In general, the elements of Q and Q"1 are functions of the param-
eters (k‘,kz) and the dependent variables. For example, the ele-
ments (Q)3; and (Q'l)33 are

37



B

~ - 1
Q. = 2 (v + ck,) , @Q@hH,., =
33 2c 2 3 2pc

[Cil - (v - Dul ,

where u and v ate the x- and y-velccity components, p 1is the
density, ¢ 1s the local speed of sound, y 1s the ratio of spe-
cific heats, and

Ry =k /2 + Y2 Ry =k /E + kDY L (B4)
The eigenvalues X, of P are

Al = AQ - klu + kzv . A3 - Al + c(ki + k%)l/Z ,

2 241/2 (B5)
A, = A - ek + k212,
Formula (B2) can be rewritten as
P = kA +k,B=0QNQ! . (B6)

Hence, the matrix A or B, or any linear combination, can be
recovered from (B6).

As in the one-dimensional case (see Sec. 4), it is convenient
to define a generalized flux vector by

= 0AO™!
JEI QAQ™'uy , (87)

where now the ei;onvalues il of the diagonal matrix A are taken
to be arbitcary. Although the matrix Q~! is rather complex, the

product QU is simply

Q" ly = . (B8)




1
'mm ‘3 S ond T R —r % M [P

Completing the computation for the generalized flux vector we

ocbtain
g . .
2(y - 1))\1 + )\3 + Al‘
2(y- DXju + " (u + cky) + 3, (u-ck,)
2(y- DA v+ A (v +ck,) + A (v-ck,)
- P 1 3 z N 2
PR - . el (39)
A
(Y= D3 (u24v2) + = [(u+ek))? + (v+ck))?]
A, R Y: RY
+-—2— [(u—ckl) + (v-ckz) ] + wn
e -
where
(3 - )Gy + 3,)c?
o ¢ O 2(y - D
and il’ iz are defined by Eq. (B4). The conventional flux vector

F(U) is obtained from (B9) if k; =1, k, = 0, and the Ag's as
given by (B5) are inserted in (B9). Likewise, G(U) is recove ed
if k, = 0, k, = 1. Formula (B9) can be used to obtain any flux

vector splitting as described in Secs. 7 and 10.

Three-Dimensional Case

In three spatial dimensions, a hyperbolic system of conserva-

tion laws has the form

U, AF(U) . 36(U) | aH(U) _
at+ T 5y + =5, 0. (B10)

This system can be rewritten in quasi-linear form as

U v U U
o + A i B 3y 4+ C 32 o, (B11)
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where A, B, C are the Jacobian matrices

= 3F = 3G = o
A=s5, B=oZ,  C=op (B12)

The generalization of (Bl) is
P = kjA + k,B + k,C . (B13)
The eigenvalues of P are
Ay =2, = Ay = kut kv + kg,
(B14)
N, = A F ek )2, a0 =0 - ek 12,
where

e = k2 4+ 1l 4 k2
k-k ky + k2 + k3 .

The matrices M, T, and their inverses, which are needed to compute

Q and Q°! as defined by Eq. (B3), are given in [6). The gener-

alized flux vector for three space dimensions is defined by
= 0An~ !
5?11 QAQ CU (B15)

where the eigenvalues il of the 5 x 5 diagonal matrix A are
again arbitrary. For the purpose of calculating JEII’ we assume
that il = iz = ia because this is the case for the physical
eigenvalues of the matrix P defined by Eq. (Bl4) and for the
eigenvalue splittings of interest. The product Q“U is

loky (v = 1)]
pky(y = 1)
Qv = 2ok (r - ) (816)
c/V2
c/V2

- -
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and the generalized flux vector is

where

(v-

2(v- )i, + i, + &

- em e e e mm e e wm m e em em e w me e e W m e wm e wm  em e e
- em e s Em o s mm vm we e ee wm em we e e e mm mm e em em = em e vm e
- em e wm Mmoo em e e vm e e Em e e e mm e em A e e M e wm e e wm e

- e e e e em Em e e e e e ER em e e AR m em e e e wm em e wm em e e

l)il(u2+v2+w2) + -—ili [(u+<:l~(1)2 + (v+cl'€2)2 + (w+cl~<3)2]

A

A
5 - - -
_ - 2 - 2 - 2
+ 5 [ (u ck]) + (v ckz) + (w ck3) ] + wIII + P

(B17)

3 - y)(xk + is)c2

Wi = 2(y - 1)

P = 2p(y - l)ilil(izw - iav) ,

u, v, and w are the x-, y-, and z-velocity components, and

k. = i 2 2 2y1/2 K o= 2 2 2yl/2
ky = ik /03 + K2+ kD2 Rk, =k, (2 + k2 + kD

ks

- 2 2 2y1/2
k3/(k1 + k3 + k3) .
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EXPLICIT UPWIND SCHEME

SOLUTION AT TIME=1.0
INITIAL PRESSURE RATI0 =5.0

10 (At/Ax) =0.2
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FIG. 1. Shock-tube solution obtained using explicit upwind

scheme.
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MacCORMACK SCHEME

SOLUTION AT TIME=1.0
INITIAL PRESSURE RATIO=5.0
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FIG. 2. Shock-tube solution obtained with explicit MacCormack

scheme.
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ALTERNATING MacCORMACK AND
EXPLICIT UPWIND SCHEMES

SOLUTION AT TIME = 1.0
INITIAL PRESSURE RATIO =5.0

(At/Ax) = 0.2
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FIG. 3. Shock-tube solution obtained by alternating explicit

upwind and MacCormack schemes.
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IMPLICIT UPWIND SCHEME
SOLUTION AT TIME = 1.0

INITIAL PRESSURE RATIO =5.0
1.0 (At/ax) =0.2
8 |- OOO O NUMERICAL
S o) —— EXACT
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1 2

FIG. 4., Shock-tube solution obtained from implicit upwind

scheme.
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IMPLICIT CENTERED SCHEME

SOLUTION AT TIME = 1.0

INITIAL PRESSURE RATIO =5.0
(At/Ax) =0.2

SMOOTHING COEFFICIENT OF 0.03

0o O NUMERICAL
8+ < —— EXACT
%

(X! §,00000000,

FIG. 5. Shock-tube solution obtained using implicit algorithm

with central spatial differencing.
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O  SPLIT UPWIND SCHEME
CENTRAL DIFFERENCING ALGORITHM
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P {
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LINEARIZED BOUNDARY EQUATIONS)
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FIG. 6. Steady state solution for 11.4% thick parabolic arc

airfoil, M, = 0.84,
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