54 research outputs found

    El servicio hidrometeorológico búlgaro

    Get PDF

    Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5α restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5α splice variant TRIM5δ in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.</p> <p>Results</p> <p>We show that the interaction of BTBD1 and BTBD2 with TOP1 requires <it>hu</it>-TOP1 residues 236 and 237, the same residues required to enhance the infectivity of progeny virions when <it>hu</it>-TOP1 is expressed in AGM producer cells. Additionally, interference with the expression of BTBD2 in AGM and human 293T target cells increased their permissiveness to HIV-1 infection two- to three-fold.</p> <p>Conclusions</p> <p>These results do not exclude the possibility that BTBD2 may modestly restrict HIV-1 infection via colocation with TRIM5 variants in cytoplasmic bodies.</p

    Fog computing security: a review of current applications and security solutions

    Get PDF
    Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems

    Role of Abl Kinase and the Wave2 Signaling Complex in HIV-1 Entry at a Post-Hemifusion Step

    Get PDF
    Entry of human immunodeficiency virus type 1 (HIV-1) commences with binding of the envelope glycoprotein (Env) to the receptor CD4, and one of two coreceptors, CXCR4 or CCR5. Env-mediated signaling through coreceptor results in Gαq-mediated Rac activation and actin cytoskeleton rearrangements necessary for fusion. Guanine nucleotide exchange factors (GEFs) activate Rac and regulate its downstream protein effectors. In this study we show that Env-induced Rac activation is mediated by the Rac GEF Tiam-1, which associates with the adaptor protein IRSp53 to link Rac to the Wave2 complex. Rac and the tyrosine kinase Abl then activate the Wave2 complex and promote Arp2/3-dependent actin polymerization. Env-mediated cell-cell fusion, virus-cell fusion and HIV-1 infection are dependent on Tiam-1, Abl, IRSp53, Wave2, and Arp3 as shown by attenuation of fusion and infection in cells expressing siRNA targeted to these signaling components. HIV-1 Env-dependent cell-cell fusion, virus-cell fusion and infection were also inhibited by Abl kinase inhibitors, imatinib, nilotinib, and dasatinib. Treatment of cells with Abl kinase inhibitors did not affect cell viability or surface expression of CD4 and CCR5. Similar results with inhibitors and siRNAs were obtained when Env-dependent cell-cell fusion, virus-cell fusion or infection was measured, and when cell lines or primary cells were the target. Using membrane curving agents and fluorescence microscopy, we showed that inhibition of Abl kinase activity arrests fusion at the hemifusion (lipid mixing) step, suggesting a role for Abl-mediated actin remodeling in pore formation and expansion. These results suggest a potential utility of Abl kinase inhibitors to treat HIV-1 infected patients

    A Decline in CCL3-5 Chemokine Gene Expression during Primary Simian-Human Immunodeficiency Virus Infection

    Get PDF
    BACKGROUND: The CC-chemokines CCL3, CCL4 and CCL5 have been found to block the entry of CCR5-tropic HIV into host cells and to suppress the viral replication in vitro, but the in vivo role of endogenous CC-chemokines in HIV-1 infection is still incompletely understood. METHODOLOGY/PRINCIPLE FINDINGS: In this study, the primate host CCL3, CCL4 and CCL5 gene expression was evaluated in response to simian-human immunodeficiency virus (SHIV) infection in rhesus macaque model. Five rhesus macaques were inoculated with CCR5-tropic SHIV(SF162P4). The mRNA levels of CCL3, CCL4 and CCL5 were measured by real-time PCR at post inoculation day (PID) 0, 7, 14, 21, 35, 56 and 180 in peripheral blood. In addition, a selected subset of samples from CXCR4-tropic SHIV(Ku1)-infected macaques was included with objective to compare the differences in CC-chemokine down-regulation caused by the two SHIVs. Gut-associated lymphoid tissues (GALT) collected from SHIV(SF162P4)-infected animals were also tested by flow cytometry and confocal microscopy to corroborate the gene expression results. Predictably, higher viral loads and CD4+ T cell losses were observed at PID 14 in macaques infected with SHIV(Ku1) than with SHIV(SF162P4). A decline in CC-chemokine gene expression was also found during primary (PID 7-21), but not chronic (PID 180) stage of infection. CONCLUSIONS: It was determined that A) SHIV(SF162P4) down-regulated the CC-chemokine gene expression during acute stage of infection to a greater extent (p<0.05) than SHIV(Ku1), and B) such down-regulation was not paralleled with the CD4+ T cell depletion. Evaluation of CC-chemokine enhancing immunomodulators such as synthetic CpG-oligonucleotides could be explored in future HIV vaccine studies

    The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components

    Get PDF
    For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease
    corecore