5,266 research outputs found

    Selenoproteinsā€”Tracing the Role of a Trace Element in Protein Function

    Get PDF
    Selenium is an important component of several enzymes, replacing sulfur in cysteine residues. Its discovery and significance are described in this primer

    Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal.

    Full text link

    Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene

    Get PDF
    The possible relationship of selenium to immunological function which has been suggested for decades was investigated in studies on selenuim metabolism in human T cells. One of the major 75Se-labeled selenoproteins detected was purified to homogeneity and shown to be a homodimer of 55-kDa subunits. Each subunit contained about 1 FAD and at least 0.74 Se. This protein proved to be thioredoxin reductase (TR) on the basis of its catalytic activities, cross-reactivity with anti-rat liver TR antibodies, and sequence identities of several tryptic peptides with the published deduced sequence of human placental TR. Physicochemical characteristics of T-cell TR were similar to those of a selenocysteine (Secys)- containing TR recently isolated from human lung adenocarcinoma cells. The sequence of a 12-residue 75Se-labeled tryptic peptide from T-cell TR was identical with a C-terminaldeduced sequence of human placental TR except that Secys was present in the position corresponding to TGA, previously thought to be the termination codon, and this was followed by Gly-499, the actual C-terminal amino acid. The presence of the unusual conserved Cys-Secys-Gly sequence at the C terminus of TR in addition to the redox active cysteines of the Cys-Val- Asn-Val-Gly-Cys motif in the FAD-binding region may account for the peroxidase activity and the relatively low substrate specificity of mammalian TRs. The finding that T-cell TR is a selenoenzyme that contains Se in a conserved Cterminal region provides another example of the role of selenium in a major antioxidant enzyme system (i.e., thioredoxin- thioredoxin reductase), in addition to the well-known glutathione peroxidase enzyme system

    Thermodynamic and Kinetic Analysis of Sensitivity Amplification in Biological Signal Transduction

    Get PDF
    Based on a thermodynamic analysis of the kinetic model for the protein phosphorylation-dephosphorylation cycle, we study the ATP (or GTP) energy utilization of this ubiquitous biological signal transduction process. It is shown that the free energy from hydrolysis inside cells, Ī”G\Delta G (phosphorylation potential), controls the amplification and sensitivity of the switch-like cellular module; the response coefficient of the sensitivity amplification approaches the optimal 1 and the Hill coefficient increases with increasing Ī”G\Delta G. We discover that zero-order ultrasensitivity is mathematically equivalent to allosteric cooperativity. Furthermore, we show that the high amplification in ultrasensitivity is mechanistically related to the proofreading kinetics for protein biosynthesis. Both utilize multiple kinetic cycles in time to gain temporal cooperativity, in contrast to allosteric cooperativity that utilizes multiple subunits in a protein.Comment: 19 pages, 7 figure

    The Dynamics of Zeroth-Order Ultrasensitivity: A Critical Phenomenon in Cell Biology

    Full text link
    It is well known since the pioneering work of Goldbeter and Koshland [Proc. Natl. Acad. Sci. USA, vol. 78, pp. 6840-6844 (1981)] that cellular phosphorylation- dephosphorylation cycle (PdPC), catalyzed by kinase and phosphatase under saturated condition with zeroth order enzyme kinetics, exhibits ultrasensitivity, sharp transition. We analyse the dynamics aspects of the zeroth order PdPC kinetics and show a critical slowdown akin to the phase transition in condensed matter physics. We demonstrate that an extremely simple, though somewhat mathematically "singular" model is a faithful representation of the ultrasentivity phenomenon. The simplified mathematical model will be valuable, as a component, in developing complex cellular signaling network theory as well as having a pedagogic value.Comment: 8 pages, 3 figure

    A study of the biosynthesis of phenazine-1-carboxylic acid

    Full text link
    Washed cell preparations of Pseudomonas aureofaciens synthesize phenazine-1-carboxylic acid in a medium consisting of 0.2 M glycerol and 0.02 M-lysine. Experiments with C14-labeled substrates indicate that all of the carbon atoms in the phenazine-1-carboxylic acid are derived from glycerol. Anthranilic acid inhibits synthesis of this phenazine compound. Incorporation of label from H3-shikimic acid has been demonstrated. In addition, a decrease in the incorporation of label from glycerol-1,3-C14 into phenazine-1-carboxylic acid has been demonstrated in the presence of unlabeled shikimic acid.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32163/1/0000218.pd

    Aging cellular networks: chaperones as major participants

    Full text link
    We increasingly rely on the network approach to understand the complexity of cellular functions. Chaperones (heat shock proteins) are key "networkers", which have among their functions to sequester and repair damaged protein. In order to link the network approach and chaperones with the aging process, we first summarize the properties of aging networks suggesting a "weak link theory of aging". This theory suggests that age-related random damage primarily affects the overwhelming majority of the low affinity, transient interactions (weak links) in cellular networks leading to increased noise, destabilization and diversity. These processes may be further amplified by age-specific network remodelling and by the sequestration of weakly linked cellular proteins to protein aggregates of aging cells. Chaperones are weakly linked hubs [i.e., network elements with a large number of connections] and inter-modular bridge elements of protein-protein interaction, signalling and mitochondrial networks. As aging proceeds, the increased overload of damaged proteins is an especially important element contributing to cellular disintegration and destabilization. Additionally, chaperone overload may contribute to the increase of "noise" in aging cells, which leads to an increased stochastic resonance resulting in a deficient discrimination between signals and noise. Chaperone- and other multi-target therapies, which restore the missing weak links in aging cellular networks, may emerge as important anti-aging interventions.Comment: 7 pages, 4 figure

    Different Catalytic Mechanisms in Mammalian Selenocysteine- and Cysteine-Containing Methionine-R-Sulfoxide Reductases

    Get PDF
    Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties
    • ā€¦
    corecore