193 research outputs found

    Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic.

    Get PDF
    BACKGROUND: Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. RESULTS: Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. CONCLUSIONS: The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century

    Accurate detection of Neisseria gonorrhoeae ciprofloxacin susceptibility directly from genital and extragenital clinical samples: towards genotype-guided antimicrobial therapy.

    Get PDF
    INTRODUCTION: Increasing use of nucleic acid amplification tests (NAATs) as the primary means of diagnosing gonococcal infection has resulted in diminished availability of Neisseria gonorrhoeae antimicrobial susceptibility data. We conducted a prospective diagnostic assessment of a real-time PCR assay (NGSNP) enabling direct detection of gonococcal ciprofloxacin susceptibility from a range of clinical sample types. METHODS: NGSNP, designed to discriminate an SNP associated with ciprofloxacin resistance within the N. gonorrhoeae genome, was validated using a characterized panel of geographically diverse isolates (n = 90) and evaluated to predict ciprofloxacin susceptibility directly on N. gonorrhoeae-positive NAAT lysates derived from genital (n = 174) and non-genital (n = 116) samples (n = 290), from 222 culture-confirmed clinical episodes of gonococcal infection. RESULTS: NGSNP correctly genotyped all phenotypically susceptible (n = 49) and resistant (n = 41) panel isolates. Ciprofloxacin-resistant N. gonorrhoeae was responsible for infection in 29.7% (n = 66) of clinical episodes evaluated. Compared with phenotypic susceptibility testing, NGSNP demonstrated sensitivity and specificity of 95.8% (95% CI 91.5%-98.3%) and 100% (95% CI 94.7%-100%), respectively, for detecting ciprofloxacin-susceptible N. gonorrhoeae, with a positive predictive value of 100% (95% CI 97.7%-100%). Applied to urogenital (n = 164), rectal (n = 40) and pharyngeal samples alone (n = 30), positive predictive values were 100% (95% CI 96.8%-100%), 100% (95% CI 87.2%-100%) and 100% (95% CI 82.4%-100%), respectively. CONCLUSIONS: Genotypic prediction of N. gonorrhoeae ciprofloxacin susceptibility directly from clinical samples was highly accurate and, in the absence of culture, will facilitate use of tailored therapy for gonococcal infection, sparing use of current empirical treatment regimens and enhancing acquisition of susceptibility data for surveillance

    Firsthand Experience and The Subsequent Role of Reflected Knowledge in Cultivating Trust in Global Collaboration

    Get PDF
    While scholars contend that firsthand experience - time spent onsite observing the people, places, and norms of a distant locale - is crucial in globally distributed collaboration, how such experience actually affects interpersonal dynamics is poorly understood. Based on 47 semistructured interviews and 140 survey responses in a global chemical company, this paper explores the effects of firsthand experience on intersite trust. We find firsthand experience leads not just to direct knowledge of the other, but also knowledge of the self as seen through the eyes of the other - what we call “reflected knowledge”. Reflected and direct knowledge, in turn, affect trust through identification, adaptation, and reduced misunderstandings

    Olfactory ensheathing cells abutting the embryonic olfactory bulb express Frzb, whose deletion disrupts olfactory axon targeting.

    Get PDF
    We and others previously showed that in mouse embryos lacking the transcription factor Sox10, olfactory ensheathing cell (OEC) differentiation is disrupted, resulting in defective olfactory axon targeting and fewer gonadotropin-releasing hormone (GnRH) neurons entering the embryonic forebrain. The underlying mechanisms are unclear. Here, we report that OECs in the olfactory nerve layer express Frzb-encoding a secreted Wnt inhibitor with roles in axon targeting and basement membrane breakdown-from embryonic day (E)12.5, when GnRH neurons first enter the forebrain, until E16.5, the latest stage examined. The highest levels of Frzb expression are seen in OECs in the inner olfactory nerve layer, abutting the embryonic olfactory bulb. We find that Sox10 is required for Frzb expression in OECs, suggesting that loss of Frzb could explain the olfactory axon targeting and/or GnRH neuron migration defects seen in Sox10-null mice. At E16.5, Frzb-null embryos show significant reductions in both the volume of the olfactory nerve layer expressing the maturation marker Omp and the number of Omp-positive olfactory receptor neurons in the olfactory epithelium. As Omp upregulation correlates with synapse formation, this suggests that Frzb deletion indeed disrupts olfactory axon targeting. In contrast, GnRH neuron entry into the forebrain is not significantly affected. Hence, loss of Frzb may contribute to the olfactory axon targeting phenotype, but not the GnRH neuron phenotype, of Sox10-null mice. Overall, our results suggest that Frzb secreted from OECs in the olfactory nerve layer is important for olfactory axon targeting

    Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean.

    Get PDF
    BACKGROUND: Small island developing states (SIDS) in the Caribbean region are challenged with managing the health outcomes of a changing climate. Health and climate sectors have partnered to co-develop climate services to improve the management of emerging arboviral diseases such as dengue fever, for example, through the development of climate-driven early warning systems. The objective of this study was to identify health and climate stakeholder perceptions and needs in the Caribbean, with respect to the development of climate services for arboviruses. METHODS: Stakeholders included public decision makers and practitioners from the climate and health sectors at the regional (Caribbean) level and from the countries of Dominica and Barbados. From April to June 2017, we conducted interviews (n = 41), surveys (n = 32), and national workshops with stakeholders. Survey responses were tabulated, and audio recordings were transcribed and analyzed using qualitative coding to identify responses by research topic, country/region, and sector. RESULTS: Health practitioners indicated that their jurisdiction is currently experiencing an increased risk of arboviral diseases associated with climate variability, and most anticipated that this risk will increase in the future. National health sectors reported financial limitations and a lack of technical expertise in geographic information systems (GIS), statistics, and modeling, which constrained their ability to implement climate services for arboviruses. National climate sectors were constrained by a lack of personnel. Stakeholders highlighted the need to strengthen partnerships with the private sector, academia, and civil society. They identified a gap in local research on climate-arbovirus linkages, which constrained the ability of the health sector to make informed decisions. Strategies to strengthen the climate-health partnership included a top-down approach by engaging senior leadership, multi-lateral collaboration agreements, national committees on climate and health, and shared spaces of dialogue. Mechanisms for mainstreaming climate services for health operations to control arboviruses included climatic-health bulletins and an online GIS platform that would allow for regional data sharing and the generation of spatiotemporal epidemic forecasts. Stakeholders identified a 3-month forecast of arboviral illness as the optimal time frame for an epidemic forecast. CONCLUSIONS: These findings support the creation of interdisciplinary and intersectoral 'communities of practice' and the co-design of climate services for the Caribbean public health sector. By fostering the effective use of climate information within health policy, research and practice, nations will have greater capacity to adapt to a changing climate

    Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection

    Get PDF
    Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites

    Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection

    Get PDF
    Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites

    Implementation of genomic surveillance of SARS-CoV-2 in the Caribbean: Lessons learned for sustainability in resource-limited settings

    Get PDF
    The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata

    Genotype, haplotype and copy-number variation in worldwide human populations

    Full text link
    Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups(1-3). Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms ( SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected-including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas-the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62552/1/nature06742.pd

    A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci

    Get PDF
    Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P < 5 × 10-8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P = 5.3 × 10 -21); 6p21.33 near HLA-C and MICA (rs9266772, P = 3.2 × 10 -12); 5p13.1 near PTGER4 (rs7720838, P = 8.2 × 10 -11); 2q33.1 in PLCL1 (rs10497813, P = 6.1 × 10-10), 3q28 in LPP (rs9860547, P = 1.2 × 10-9); 20q13.2 in NFATC2 (rs6021270, P = 6.9 × 10-9), 4q27 in ADAD1 (rs17388568, P = 3.9 × 10-8); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P = 4.8 × 10-8). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P = 1.7 × 10-12), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease
    corecore