517 research outputs found

    Exploring the utility of assistive artificial intelligence for ultrasound scanning in regional anesthesia

    Get PDF
    This work was funded by Intelligent Ultrasound Limited (Cardiff, UK). Data from this study were included in medical device regulatory approval submissions in the USA.Introduction: Ultrasound-guided regional anesthesia (UGRA) involves the acquisition and interpretation of ultrasound images to delineate sonoanatomy. This study explores the utility of a novel artificial intelligence (AI) device designed to assist in this task (ScanNav Anatomy Peripheral Nerve Block; ScanNav), which applies a color overlay on real-time ultrasound to highlight key anatomical structures. Methods: Thirty anesthesiologists, 15 non-experts and 15 experts in UGRA, performed 240 ultrasound scans across nine peripheral nerve block regions. Half were performed with ScanNav. After scanning each block region, participants completed a questionnaire on the utility of the device in relation to training, teaching, and clinical practice in ultrasound scanning for UGRA. Ultrasound and color overlay output were recorded from scans performed with ScanNav. Experts present during the scans (real-time experts) were asked to assess potential for increased risk associated with use of the device (eg, needle trauma to safety structures). This was compared with experts who viewed the AI scans remotely. Results: Non-experts were more likely to provide positive and less likely to provide negative feedback than experts (p=0.001). Positive feedback was provided most frequently by non-experts on the potential role for training (37/60, 61.7%); for experts, it was for its utility in teaching (30/60, 50%). Real-time and remote experts reported a potentially increased risk in 12/254 (4.7%) vs 8/254 (3.1%, p=0.362) scans, respectively. Discussion: ScanNav shows potential to support non-experts in training and clinical practice, and experts in teaching UGRA. Such technology may aid the uptake and generalizability of UGRA. TRIAL REGISTRATION NUMBER: NCT04918693.Publisher PDFPeer reviewe

    Rapid deposition of oxidized biogenic compounds to a temperate forest

    Get PDF
    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H_2O_2), nitric acid (HNO_3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO_3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m^(−2)⋅s^(−1)). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases

    Why do models overestimate surface ozone in the Southeast United States

    Get PDF
    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer

    Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations

    Get PDF
    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble species within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO_3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH_2O) and hydrogen peroxide (H_2O_2) and complete retention for methyl hydrogen peroxide (CH_3OOH) and sulfur dioxide (SO_2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO_3 and less removal of CH_3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NO_x), processes that may explain the observed differences in HNO_3 and CH_3OOH scavenging

    ParaMED Home: A protocol for a randomised controlled trial of paramedic assessment and referral to access medical care at home

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Australia approximately 25% of Emergency Department (ED) attendances are via ambulance. ED overcrowding in Australia, as in many countries, is common. Measures to reduce overcrowding include the provision of enhanced timely primary care in the community for appropriate low risk injury and illness. Therefore paramedic assessment and referral to a community home hospital service, in preference to transfer to ED, may confer clinical and cost benefit.</p> <p>Methods/Design</p> <p>A randomised controlled trial. Consenting adult patients that call an ambulance and are assessed by paramedics as having an eligible low risk problem will be randomised to referral to ED via ambulance transfer or referral to a rapid response service that will assess and treat the patient in their own residence. The primary outcome measure is requirement for unplanned medical attention (in or out of hospital) in the first 48 hours. Secondary outcomes will include a number of other clinical endpoints. A cost effectiveness analysis will be conducted.</p> <p>Discussion</p> <p>If this trial demonstrates clinical non-inferiority and cost savings associated with the primary assessment service, it will provide one means to safely address ED overcrowding.</p> <p>Trial Registration</p> <p>Australian and New Zealand Clinical Trials Registry Number <a href="http://www.anzctr.org.au/trial_view.aspx?ID=335818">12610001064099</a></p

    Profiles of Reactive Trace Gases over Remote Oceans During ATom

    Get PDF
    The Atmospheric Tomography (ATom) mission deployed an extensive gas and aerosol payload on the NASA DC-8 aircraft on four campaigns spanning each season. ATom systematically sampled the atmosphere from 0.2 to 12 kilometer altitude, from 85 degrees North Latitude to 65 degrees South Latitude, in both the Pacific and the Atlantic to provide detailed profiles of chemical composition over the remote oceans. We will present profiles of reactive trace species, such as O3, NOx, NOy, HOx, HCHO, and several other short-lived source gases. We will combine these measurements with results from a 0-D box model to show their utility in (1) evaluating gradients in latitude/season, (2) identifying contributions of pollution from long-range and convective transport, and (3) evaluating column measurements from remote sensing satellite instruments
    • …
    corecore