120 research outputs found

    A model to control the epidemic of H5N1 influenza at the source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No country is fully prepared for a 1918-like pandemic influenza. Averting a pandemic of H5N1 influenza virus depends on the successful control of its endemicity, outbreaks in poultry and occasional spillage into human which carries a case-fatality rate of over 50%. The use of perimetric depopulation and vaccination has failed to halt the spread of the epidemic. Blanket vaccination for all poultry over a large geographical area is difficult. A combination of moratorium, segregation of water fowls from chickens and vaccination have been proved to be effective in the Hong Kong Special Administrative Region (HKSAR) since 2002 despite endemicity and outbreaks in neighbouring regions. Systematic surveillance in southern China showed that ducks and geese are the primary reservoirs which transmit the virus to chickens, minor poultry and even migratory birds.</p> <p>Presentation of the hypothesis</p> <p>We hypothesize that this combination of moratorium, poultry segregation and targeted vaccination if successfully adapted to an affected district or province in any geographical region with high endemicity would set an example for the control in other regions.</p> <p>Testing the hypothesis</p> <p>A planned one-off moratorium of 3 weeks at the hottest month of the year should decrease the environmental burden as a source of re-infection. Backyard farms will then be re-populated by hatchlings from virus-free chickens and minor poultry only. Targeted immunization of the ducks and geese present only in the industrial farms and also the chickens would be strictly implemented as blanket immunization of all backyard poultry is almost impossible. Freely grazing ducks and geese would not be allowed until neutralizing antibodies of H5 subtype virus is achieved. As a proof of concept, a simple mathematical model with susceptible-infected-recovered (SIR) structure of coupled epidemics between aquatic birds (mainly ducks and geese) and chickens was used to estimate transmissibility within and between these two poultry populations. In the field the hypothesis is tested by prospective surveillance of poultry and immunocompetent patients hospitalized for severe pneumonia for the virus before and after the institution of these measures.</p> <p>Implications of the Hypothesis</p> <p>A combination of targeted immunization with the correct vaccine, segregation of poultry species and moratorium of poultry in addition to the present surveillance, biosecurity and hygienic measures at the farm, market and personal levels could be important in the successful control of the H5N1 virus in poultry and human for an extensive geographical region with continuing outbreaks. Alternatively a lesser scale of intervention at the district level can be considered if there is virus detection without evidence of excess poultry deaths since asymptomatic shedding is common in waterfowls.</p

    Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34+ Cells

    Get PDF
    It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34+ cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34+ cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34+ cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34+ cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment

    Host plant range of a fruit fly community (Diptera: Tephritidae): Does fruit composition influence larval performance?

    Get PDF
    Background: Phytophagous insects differ in their degree of specialisation on host plants, and range from strictly monophagous species that can develop on only one host plant to extremely polyphagous species that can develop on hundreds of plant species in many families. Nutritional compounds in host fruits affect several larval traits that may be related to adult fitness. In this study, we determined the relationship between fruit nutrient composition and the degree of host specialisation of seven of the eight tephritid species present in La Réunion; these species are known to have very different host ranges in natura. In the laboratory, larval survival, larval developmental time, and pupal weight were assessed on 22 fruit species occurring in La Réunion. In addition, data on fruit nutritional composition were obtained from existing databases. Results: For each tephritid, the three larval traits were significantly affected by fruit species and the effects of fruits on larval traits differed among tephritids. As expected, the polyphagous species Bactrocera zonata, Ceratitis catoirii, C. rosa, and C. capitata were able to survive on a larger range of fruits than the oligophagous species Zeugodacus cucurbitae, Dacus demmerezi, and Neoceratitis cyanescens. Pupal weight was positively correlated with larval survival and was negatively correlated with developmental time for polyphagous species. Canonical correspondence analysis of the relationship between fruit nutrient composition and tephritid survival showed that polyphagous species survived better than oligophagous ones in fruits containing higher concentrations of carbohydrate, fibre, and lipid. Conclusion: Nutrient composition of host fruit at least partly explains the suitability of host fruits for larvae. Completed with female preferences experiments these results will increase our understanding of factors affecting tephritid host range. (Résumé d'auteur

    PrtT-Regulated Proteins Secreted by Aspergillus fumigatus Activate MAPK Signaling in Exposed A549 Lung Cells Leading to Necrotic Cell Death

    Get PDF
    Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications

    Longevity by RNA polymerase III inhibition downstream of TORC1

    Get PDF
    Three distinct RNA polymerases (Pols) transcribe different classes of genes in the eukaryotic nucleus1. Pol III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including transfer RNAs (tRNAs) and 5S ribosomal RNA (rRNA)2. Historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. The prominent regulator of Pol III activity, Target of Rapamycin kinase Complex 1 (TORC1), is an important longevity determinant3, raising the question of Pol III’s involvement in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting Pol III activity in the adult worm or fly gut is sufficient to extend lifespan, and in flies, longevity can be achieved by Pol III inhibition specifically in the intestinal stem cells (ISCs). The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Importantly, Pol III acts downstream of TORC1 for lifespan and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal output of this key nutrient signalling network for longevity; Pol III’s growth-promoting, anabolic activity mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target

    Computational Modeling of the Hematopoietic Erythroid-Myeloid Switch Reveals Insights into Cooperativity, Priming, and Irreversibility

    Get PDF
    Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU. 1-GATA-1 switch also interacts with another mutually antagonistic pair, C/EBP alpha-FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Dynamics of corticospinal motor control during overground and treadmill walking in humans

    No full text
    AbstractIncreasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km h−1), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC and ITC at theta, alpha, beta and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared to treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations, but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking.New &amp; NoteworthyWe investigated cortical and spinal activity during overground and treadmill walking in healthy adults. Parallel increases in power, CMC and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. These findings identify neurophysiological mechanisms that are important for understanding cortical control of human gait in health and disease.</jats:sec
    corecore