67 research outputs found
Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats
Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
CXCL13 in idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension
A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation & Right Ventricular Function
\ua9 2024 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF
Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension
Background: Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats.
Methods: Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed.
Results: The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling.
Conclusion: The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension
A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation & Right Ventricular Function.
Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF
Endothelium-derived endothelin-1
One year after the revelation by Dr. Furchgott in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr. Yanagisawa’s group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21-amino acid) peptide were quickly determined in humans, and it was reported that, in most cardiovascular diseases, circulating levels of ET-1 were increased, and ET-1 was then tagged as “a bad guy.” The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of the first dual ET-1 receptor antagonist in 1993 by Dr. Clozel’s team, who entered clinical development with bosentan, which was offered to patients with pulmonary arterial hypertension in 2001. The revelation of Dr. Furchgott opened a Pandora’s box with ET-1 as one of the actors. In this brief review, we will discuss the physiological and pathophysiological role of endothelium-derived ET-1 focusing on the regulation of the vascular tone, and as much as possible in humans. The coronary bed will be used as a running example in this review because it is the most susceptible to endothelial dysfunction, but references to the cerebral and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of nitric oxide and ET-1
- …
