140 research outputs found

    Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks

    Get PDF
    There has been extensive research on the sensing of explosive nitroaromatic compounds (NACs) using fluorescent metal-organic frameworks (MOFs). However, ambiguity in the sensing mechanism has hampered the development of efficient explosive sensors. Here we report the synthesis of a hydroxyl-functionalized MOF for rapid and efficient sensing of NACs and examine in detail its fluorescence quenching mechanisms. In chloroform, quenching takes place primarily by exciton migration to the ground-state complex formed between the MOF and the analytes. A combination of hydrogen-bonding interactions and ??????? stacking interactions are responsible for fluorescence quenching, and this observation is supported by single-crystal structures. In water, the quenching mechanism shifts toward resonance energy transfer and photo-induced electron transfer, after exciton migration as in chloroform. This study provides insight into florescence-quenching mechanisms for the selective sensing of NACs and reduces the ambiguity regarding the nature of interactions between the MOF and NACs

    Spontaneous Reaction Silencing in Metabolic Optimization

    Get PDF
    Metabolic reactions of single-cell organisms are routinely observed to become dispensable or even incapable of carrying activity under certain circumstances. Yet, the mechanisms as well as the range of conditions and phenotypes associated with this behavior remain very poorly understood. Here we predict computationally and analytically that any organism evolving to maximize growth rate, ATP production, or any other linear function of metabolic fluxes tends to significantly reduce the number of active metabolic reactions compared to typical non-optimal states. The reduced number appears to be constant across the microbial species studied and just slightly larger than the minimum number required for the organism to grow at all. We show that this massive spontaneous reaction silencing is triggered by the irreversibility of a large fraction of the metabolic reactions and propagates through the network as a cascade of inactivity. Our results help explain existing experimental data on intracellular flux measurements and the usage of latent pathways, shedding new light on microbial evolution, robustness, and versatility for the execution of specific biochemical tasks. In particular, the identification of optimal reaction activity provides rigorous ground for an intriguing knockout-based method recently proposed for the synthetic recovery of metabolic function.Comment: 34 pages, 6 figure

    Annealing study and thermal investigation on bismuth sulfide thin films prepared by chemical bath deposition in basic medium

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Applied Physics A 124.2 (2018): 166. The final authenticated version is available online at: http://doi.org/10.1007/s00339-018-1584-7Bismuth sulfide thin films were prepared by chemical bath deposition using thiourea as sulfide ion source in basic medium. First, the effects of both the deposition parameters on films growth as well as the annealing effect under argon and sulfur atmosphere on as-deposited thin films were studied. The parameters were found to be influential using the Doehlert matrix experimental design methodology. Ranges for a maximum surface mass of films (3 mg cm-2) were determined. A well crystallized major phase of bismuth sulfide with stoichiometric composition was achieved at 190°C for 3 hours. The prepared thin films were characterized using Grazing Incidence X-ray diffraction (GIXRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). Second, the band gap energy value was found to be 1.5 eV. Finally, the thermal properties have been studied for the first time by means of the electropyroelectric (EPE) technique. Indeed, the thermal conductivity varied in the range of 1.20 - 0.60 W m-1 K-1 while the thermal diffusivity values increased in terms of the annealing effect ranging from 1.8 to 3.5 10-7 m2s-1This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research and by the WINCOST (ENE2016-80788-C5-2-R) project funded by the Spanish Ministry of Economy and Competitivenes

    Elevated serum neutrophil elastase is related to prehypertension and airflow limitation in obese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil elastase level/activity is elevated in a variety of diseases such as atherosclerosis, systolic hypertension and obstructive pulmonary disease. It is unknown whether obese individuals with prehypertension also have elevated neutrophil elastase, and if so, whether it has a deleterious effect on pulmonary function. Objectives: To determine neutrophil elastase levels in obese prehypertensive women and investigate correlations with pulmonary function tests.</p> <p>Methods</p> <p>Thirty obese prehypertensive women were compared with 30 obese normotensive subjects and 30 healthy controls. The study groups were matched for age. Measurements: The following were determined: body mass index, waist circumference, blood pressure, lipid profile, high sensitivity C-reactive protein, serum neutrophil elastase, and pulmonary function tests including forced expiratory volume in one second (FEV<sub>1</sub>), forced vital capacity (FVC) and FEV<sub>1</sub>/FVC ratio.</p> <p>Results</p> <p>Serum neutrophil elastase concentration was significantly higher in both prehypertensive (405.8 ± 111.6 ng/ml) and normotensive (336.5 ± 81.5 ng/ml) obese women than in control non-obese women (243.9 ± 23.9 ng/ml); the level was significantly higher in the prehypertensive than the normotensive obese women. FEV1, FVC and FEV1/FVC ratio in both prehypertensive and normotensive obese women were significantly lower than in normal controls, but there was no statistically significant difference between the prehypertensive and normotensive obese women. In prehypertensive obese women, there were significant positive correlations between neutrophil elastase and body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, low density lipoprotein cholesterol, high sensitivity C-reactive protein and negative correlations with high density lipoprotein cholesterol, FEV1, FVC and FEV1/FVC.</p> <p>Conclusion</p> <p>Neutrophil elastase concentration is elevated in obese prehypertensive women along with an increase in high sensitivity C-reactive protein which may account for dyslipidemia and airflow dysfunction in the present study population.</p

    “Working the System”—British American Tobacco's Influence on the European Union Treaty and Its Implications for Policy: An Analysis of Internal Tobacco Industry Documents

    Get PDF
    Katherine Smith and colleagues investigate the ways in which British American Tobacco influenced the European Union Treaty so that new EU policies advance the interests of major corporations, including those that produce products damaging to health
    corecore