3,277 research outputs found

    Structural damage detection using auto/cross-correlation functions under multiple unknown excitations

    Get PDF
    2013-2014 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Gamma-Ray Bursts in the Swift Era

    Full text link
    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts (GRBs). Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of GRBs as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than 40 years after their discovery, GRBs continue to present major challenges on both observational and theoretical fronts.Comment: 67 pages, 16 figures; ARAA, 2009; http://arjournals.annualreviews.org/toc/astro/47/

    Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films

    Get PDF
    The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 900 Celsius degrees) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages, PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected, "Results and discussion" section significantly extended to better explain etching mechanism and features of Raman spectra, references adde

    Facile Synthesis of High Quality Graphene Nanoribbons

    Full text link
    Graphene nanoribbons have attracted attention for their novel electronic and spin transport properties1-6, and because nanoribbons less than 10 nm wide have a band gap that can be used to make field effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotube using mechanical sonication in an organic solvent. The nanoribbons exhibit very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported to date (up to 5e2/h and 1500 cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the nanoribbons exhibit phase coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2% of the starting raw nanotube soot material, which was significantly higher than previous methods capable of producing high quality narrow nanoribbons1. The relatively high yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.Comment: Nature Nanotechnology in pres

    From correlation functions to Wilson loops

    Get PDF
    We start with an n-point correlation function in a conformal gauge theory. We show that a special limit produces a polygonal Wilson loop with nn sides. The limit takes the nn points towards the vertices of a null polygonal Wilson loop such that successive distances xi,i+120x^2_{i,i+1} \to 0. This produces a fast moving particle that generates a "frame" for the Wilson loop. We explain in detail how the limit is approached, including some subtle effects from the propagation of a fast moving particle in the full interacting theory. We perform perturbative checks by doing explicit computations in N=4 super-Yang-Mills.Comment: 37 pages, 10 figures; typos corrected, references adde

    Evolution of broad-band SED during outburst rise in NS X-ray Nova Aql X-1

    Get PDF
    The observed evolution of the broad-band spectral energy distribution (SED) in NS X-ray Nova Aql X-1 during the rise phase of a bright Fast-Rise-Exponential-Decay-type outburst in 2013 can be understood in the framework of thermal emission from non-stationary accretion disc with radial temperature distribution transforming from a single-temperature blackbody emitting ring into the multicolour irradiated accretion disc. SED evolution during the hard to soft X-ray state transition looks unusual, as it cannot be reproduced by the standard disc irradiation model with a single irradiation parameter for NUV, Optical and NIR spectral bands. NIR (NUV) band is correlated with soft (hard) X-ray flux changes during the state transition interval, respectively. In our interpretation, at the moment of X-ray state transition UV-emitting parts of the accretion disc are screened from direct X-ray illumination from the central source and are heated primarily by hard X-rays (E > 10 keV), scattered in the hot corona or wind possibly formed above the optically thick outer accretion flow; the outer edge of multicolour disc, which emits in Optical-NIR, can be heated primarily by direct X-ray illumination. We point out that future simultaneous multiwavelength observations of X-ray Nova systems during the fast X-ray state transition interval are of great importance, as it can serve as 'X-ray tomograph' to study physical conditions in outer regions of accretion flow. This can provide an effective tool to directly test the energy-dependent X-ray heating efficiency, vertical structure and accretion flow geometry in transient low-mass X-ray binaries

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    corecore