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Abstract 

Traditional structural system identification and damage detection methods use vibration responses 

under single excitation. This paper presents an auto/cross-correlation function-based method using 

acceleration responses under multiple ambient white noise or impact excitations. The 

auto/cross-correlation functions are divided into two parts. One is associated with the structural 

parameters and the other with the energy of the excitation. These two parts are updated sequentially 

using a two-stage method. Numerical and experimental studies are conducted to demonstrate the 

accuracy and robustness of the proposed method. The effects of measurement noise and number of 

measurement points on the identification results are also studied. 
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1. Introduction 

 

Traditional damage detection methods can be classified into two categories: time domain methods 

and frequency methods. The basic idea of frequency domain methods is that modal parameters (such 

as frequencies and mode shapes) are functions of physical parameters. The modal parameters are 

extracted via modal identification methods1, and the structural parameters are subsequently identified 

using model updating techniques2, 3. The time domain methods use the measured time history 

responses directly for damage detection. The error between the calculated dynamic responses (such 

as acceleration) and measured counterparts is minimized. Several methods, such as quadratic 

sum-squares error method4, extended Kalman filter method5, 6, least-squares method7, and others8, 9 

have been proposed for damage detection using acceleration responses.  

Damage detection methods with unknown input force are more promising for engineering 

applications because the excitations (for example, wind loading) are usually difficult to measure. 

Thus, identifying a system that uses the measured responses only without the excitation information 

would be desirable. However, these methods require that the number of sensors should be larger 

than the total number of unknown excitations and the measurements (sensors) must be available at 

the DOFs where the external excitations act5, 6. These limitations are the necessary conditions for 

the existence of the analytical recursive solution6, which discourages the use of most existing 

algorithms for a practical structure, and a new method for damage detection without these 

limitations should be explored. 

 Recently, damage detection methods to overcome the later limitation have been developed. 

Yang et al.10 proposed a damage detection method based on the cross-correlation function amplitude 

vector (CorV) of the measured responses. The damage can be detected and located using the relative 

difference between CorVs before and after damage. They introduced the inner product vector11, 12 of 

cross-correlation function for damage detection. Li and Law13, 14 proposed a damage detection 

method based on the covariance of covariance matrix, which is formed from the 

auto/cross-correlation function of the acceleration responses of the structure under ambient white 

noise excitation. The covariance of covariance matrix was found more sensitive to local damage than 

modal frequencies and mode shapes. However, these methods are proposed for damage detection 
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under single excitation. Practical structures are usually subjected to multiple excitations (for 

instance, wind loading and traffic loading), and these methods10-14 fail to identify the structural 

parameters under multiple unknown excitations. Consequently, methods for system identification 

and damage detection under multiple unknown excitations are imperative.  

In the present paper, an auto/cross-correlation function-based damage detection method is 

proposed for civil structure under multi-excitations without above mentioned limitations. The 

auto/cross-correlation function under multiple excitations is derived as two parts. One is associated 

with the unit impulse response function that depends on structural parameters. The other is a constant 

part that depends on the energy of the excitation force. The structural parameters are then obtained 

through the model updating technique. Numerical and experimental studies are performed to 

demonstrate the effectiveness of the proposed method. 

 

2.  Damage detection method 

 

2.1 Cross-correlation function under single excitation 

 

2.1.1 Cross-correlation function of response under white noise excitation 

 

The equation of motion of an N-degree-of-freedom (DOF) damped structural system is given as 

       t t t f tMx Cx Kx B     ,                         (1) 

where M, C, and K are the N×N mass, damping, and stiffness matrices, respectively;  f t  is the 

excitation force; and B is the mapping vector with 1 at the excitation location and 0 at others. 

 tx ,  tx , and  tx  are the N×1 displacement, velocity, and acceleration vectors, respectively. 

Assume that the structure has zero initial conditions and excitation force  f t  is a white noise 

process.  

The acceleration response of the structure at i-th DOF can be expressed as 

     i ix t h t f d  



    ,                           (2) 

where
  ih t  is the unit impulse response function at i when the structure is subjected to a unit 
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impulse force. 

Let  ijR   denote the cross-correlation function of the accelerations of at the i-th and j-th 

DOFs of the system, which can be written as follows13, 15: 

          1 1 1 2 2 2

t t-

ij i jR E h t f d h t τ f d


      
 

      

,
        (3) 

where 1  and 2  are the small time variations. With the assumption of white noise excitation, the 

above equation can be rewritten as 

            1 2 1 2 1 2

t t-

ij i jR h t h t E f f d d


       
 

       
.
         (4) 

The auto-correlation function of  f t  is13, 15 

      1 2 1 2E f f S       ,                      (5) 

where S is a constant defining the excitation energy and   is the Dirac delta function. 

When 1 2  , Eqs. (4) and (5) give13 

     
0

+

ij i jR S h t h t dt 


     .                      (6) 

Define  

     
0ij i jh t h t dt


 H θ  
.
                     (7)  

Eq. (7) is the function of structural physical parameters only. θ  is a vector consisting of the 

stiffness parameters of each element. Consequently, Eq. (6) can be written as  

   ij ijR S  H θ  .                              (8) 

Eq. (8) indicates that the cross-correlation function depends only on structural parameters  ijH θ  

and constant S.  

 

2.1.2 Cross-correlation function of response under unit impulse excitation 

 

Instrumented hammers have likewise been widely used in laboratory experiments. The excitation 

force can be described as a large constant force applied that lasts within a very short time duration as 

    , 0

0,

A t   t
f t

 else     

   
 


                            (9) 

where A is a constant, and   is the impulse duration.  

Substituting Eq. (9) into Eq. (2), the acceleration response of the structure can be expressed as 
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     
0i ix t A h t d   


     .                        (10) 

According to the property of Dirac delta function, 

   i ix t Ah t   .                               (11) 

Therefore, the cross-correlation function ijR  can be written as 

     

   

   

0

0

2

0

ij i j

i j

i j

R τ x t x t τ dt

         Ah t Ah t τ dt

         A h t h t τ dt







 

 

 





 

 

 

    .                      (12) 

 The cross-correlation functions under impulse excitation and white noise excitation have a 

similar form as shown in Eq. (6) and Eq. (12), respectively. The unit impulse response function
 

 ih t  in both cases can be obtained in Eq. (1), where  f t  is a Dirac delta function. The function 

can be regarded as a free vibration state with some specific initial conditions. Assuming that the 

system is initially in static equilibrium, the unit impulse response function can be calculated using the 

Newmark method16: 

     
    1

0

0 0, 0

t t t


   
  

Mh Ch Kh

h h M B

 

   .                     (13) 

where,  th ,  th  and  th  are the unit impulse displacement, velocity and acceleration 

vectors, respectively. 

 

2.2 Cross-correlation function under multiple excitations 

 

Previous studies usually considered only single excitations. However, practical structures are 

generally subjected to external forces at multiple points. Multiple white noise or impulse excitations 

are investigated in this section. The equation of motion of an N- DOF damped structural system 

under multiple excitations is given as 

       
1

nf

i i
i=

t t t f tMx Cx Kx B   
,                        (14) 

where fi is the i-th excitation force, Bi is the mapping vector corresponding to excitation fi, and nf is 

the total number of excitations. 

The responses under the multiple excitations can be written as the superposition of those under 

single excitation. That is, 
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         1 2
1

nf

i i, i, i,nf i,p
p

x t x t x t x t x t


         ,                 (15) 

where  i,px t  is the response at the i-th DOF under p-th single excitation force. 

 Let  ,i jx xR τ   denote the cross-correlation function of the accelerations at the i-th and j-th DOFs 

of the system under the multiple excitations. It can be written as 

         
1 2 1 2

, ,,
1 1

i j i,p j,qi, i, i,nf j, j, j,nf

nf nf

x x x xx x x x x x
p q

R τ R τ R τ
     

 

          
          (16) 

and 

          
, ,, , 1 , 2 1 2 1 2i p j q

t t-τ

x x i p j q p qR τ h t μ h t τ μ E f μ f μ dμ dμ
 

      
 

,
    (17) 

where  i,ph t  is the unit impulse response functions at i under excitation at p locations. 

The excitations are uncorrelated and, consequently,     1 2 0p qE f μ f μ   ( p q ). This 

equation leads to  

 
, , 0

i p j,qx xR τ    ( p q ).                        (18) 

Therefore, Eq. (16) can be expressed as 

   , ,
1

i j i,p j,p

nf

x x x x
p

R τ R τ


     .                     (19) 

As discussed in section 2.1.1, the auto-correlation function of  pf t  is 

      1 2 1 2p p pE f f S     
.
                  (20) 

Then, 

     
, ,, , ,0

,
i p j px x p i p j pR τ S h t h t τ dt


  

   .                    (21) 

Define  

  1 2, , ,p nfH H H H H         ,                 (22) 

   , ,0p i p j ph t h t τ dt


 H      ,                    (23) 

1 2, , , ,
T

p nfS S S S   s     .                     (24) 

 The cross-correlation function between different sensors can be rewritten as 

     ,τ  R H s R s   .                      (25) 

In Eq. (23),
  i,ph t  and  j,ph t  can be obtained in a similar manner as that under a single 
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excitation. In practice, the cross-correlation function of acceleration can be obtained as a discrete 

inverse Fourier transform of the cross-spectral density function17. 

The above section shows that the cross-correlation function of acceleration responses, 

regardless of whether single or multiple excitations, can be written as the product of a constant and 

a function of structural parameters. A damage detection method based on the cross-correlation 

function is proposed in the following section. 

 

2.3 Damage detection using cross-correlation function  

 

Assuming that the structural damage is in the form of a change in the structural stiffness, the stiffness 

matrix of the damaged structure can then be expressed as   

1

ne
d

i i
i

K


K  ,                               (26) 

where iK  is the stiffness matrix of the i-th element in the intact state, i  ( 0 1i   ) is defined as 

the stiffness fraction to the intact stiffness of the i-th element, and ne  is the total number of elements 

in the structure. 0   denotes that the element loses its stiffness completely, whereas 1   

indicates that the element is intact. 

The problem of system identification is to determine the system parameters   from the 

measured cross-correlation function using the model updating technique18. The objective function 

for model updating is defined as the difference between the measured and calculated cross-correlation 

functions  

mea cal J R R  ,                                (27) 

where meaR  is the measured cross-correlation function and calR  is the corresponding 

cross-correlation function calculated from the finite element model. 

A two-stage method is employed in model updating. In the first stage, constant coefficient part 

s  can be estimated from Eq. (25) as 

  mea

s H R                             (28) 

given the initial value of θ , where  H θ  is the pseudo-inverse of  H θ . 

 In the second stage, the cross-correlation function can be expressed as a first-order Taylor

 expansion18  
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( )2cal
mea cal= = +o 

 

R

R R R θ θ
θ                        (29) 

 
1 2

, , ,cal cal cal cal cal

i ne   
     

       

R R R R R
 


  .                   (30) 

The high order terms ( )θ2o  are small and can be ignored. cal

R

θ
 is the sensitivity matrix of the 

cross-correlation function with respect to structural parameters, which can be obtained using the 

Newmark method13 or the forward difference method19 as  

     

     

1 2 1 2

0

1 2 1 2

, , , , , , , ,
lim

, , , , , , , ,

cal i ne cal i necal

i

cal i ne cal i ne

θ θ θ + , θ θ θ θ , θ

θ

θ θ θ + , θ θ θ θ , θ
         



















R s R sR

R s R s

   

   
  .   (31) 

where   is the incremental step for the finite difference method. 

Eq. (29) can be solved by the damped least-squares method as  

1T T

cal cal cal


                          

R R R
θ λ R

θ θ θ
  ,                 (32) 

where λ  is the non-negative optimal regularization parameter determined by the L-curve method20.  

 Structural parameters θ  in the undamaged state can be obtained using the model updating 

technique. Similarly, those in the damaged state θ  can be obtained when measured accelerations 

are available. The structural damage can be identified as  

i i
i

i

 






 .                              (33) 

The nonzero value of i  denotes the damage at element i. 

 

2.4 Implementation Procedures 

 

The above cross-correlation-based damage detection procedure can be summarized as follows:  

Step 1: Measure the structural responses under ambient white noise excitations or impulse 

excitations and calculate the auto/cross-correlation functions. 

Step 2: Set the initial value of the structural parameter 0 0 0 0
1 2, , , ne     θ  . 

Step 3: Calculate  H θ  from Eq. (22) and estimate constant value s from Eq. (28). 

Step 4: Calculate the auto/cross-correlation function from Eq. (25) and the sensitivity matrix from 
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Eq. (31). 

Step 5: Update the structural parameters from 1i i   θ θ θ , where θ  is obtained from Eq. 

(32). 

Step 6: Repeat steps 3 to 5 until the following convergence condition in Eq. (34) is satisfied. The 

tolerance in this paper is set to 10-5. 

1

100%
i i

i
Tolerance

 
 

θ θ

θ
                      (34) 

Step 7: For damage detection, the measurement responses before and after damage are both 

available. The stiffness parameters θ  and θ  can be identified, respectively. 

Step 8: Compare the changes in element stiffness with Eq. (33) to identify the elements of the 

damages. 

 

3.  Numerical study 

 

The steel cantilever beam21 shown in Figure 1 was used for the numerical study. The size of the 

cross-section was 50.75 mm×6.0 mm, and the mass density was 7.67×103 kg/m3. The structure was 

modeled with nine Euler–Bernoulli beam elements (i.e., ne=9). The initial Young’s modulus in the 

intact state was 2.0×1011 N/m2. 

The structure was subjected to two white noise excitations in the vertical direction, as shown in 

Figure 1, with a zero mean and unit standard deviation. The computed responses from Eq. (1) under 

the excitation are taken as the “measured” responses for the following studies. The sampling 

frequency was 2000 Hz and 3 h force vibration responses were recorded. The calculated acceleration 

responses in the vertical direction were considered as the “measured” responses. The 

auto/cross-correlation function was calculated from the measured responses, and the first 100 data of 

auto/cross-correlation function were selected for the numerical study. 

 

3.1 Structural stiffness identification 

 

The real elastic modulus of the structural material is simulated by adding a random variation to the 

initial ones (i.e., 2.0×1011 N/m2). The random variation has a normal distribution, with 10% 

standard deviation of its initial value. Since the acceleration responses are calculated, the 
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cross-spectral density function of the response can be obtained. Then the cross-correlation function 

of acceleration can be obtained as a discrete inverse Fourier transform of the cross-spectral density 

function17. The cross-correlation function of accelerations at Nodes 4 and 6 ( 4,6R ) was used for 

system identification.  

The real stiffness parameter of each element was identified using the proposed two-stage 

model updating technique. The initial values of the stiffness factors for iteration were set the same 

at 1.2, as shown in Figure 2. The model updating results converge approximately after 40 iterations. 

The final identified stiffness factors highly agree with the true values without any false alarm, as 

shown in Figure 3. The maximum relative error between the true value and the identification result is 

1.0 % at Element 1.  

 

3.2 Effect of measurement noise 

 

Random noise is added to the measured response to simulate the uncertainty of the measurements as  

 m
p noiseE σ x x N x  

,
                             (35) 

where Ep is the percentage noise level, noiseN  is the standard normal distribution vector with zero 

mean and unit standard deviation, and   x  is the standard deviation of the “measured” 

acceleration response.  

 The 10% and 20% measurement noise are respectively added to the “measured” responses to 

study the effect of measurement noise on the identification results. Figure 4 shows the identified 

stiffness fractions under different noise levels. The maximum relative error was 1.1% at Element 2 

for the case of 10% noise and 2.7% at Element 9 for the case of 20% noise. The results are 

satisfactory even when 20% noise is included. The effect of the measurement noise is analyzed as 

follows. 

 The cross-correlation function of noised responses at i and j locations can be expressed as  

       

       
, ,

, , , ,

, ,

, , , ,

m m
i j i noise i j noise j

i j i noise j noise i j noise i noise j

N N

N N N N

 

   

 


   

x x x x

x x x x

R R

R R R R

   

   
.

          (36) 

 For white noise that leads to  , 0
i noise,jN τ xR  and  , 0

noise,i jN τ xR  ,  

 
 

     
,

2,

,

 ( )

( )

i j

m m
i j

i j p

i j

E i j




   

  
 

x x

x x

x x

R
R

R

 

 

 

 .                (37) 



11 

 

 In theory, the cross-correlation function is noise free, and the auto-correlation function contains 

noise only when 0  . Thus, the effect of measurement noise on the system identification results is 

very small as shown in Figure 5, where the cross-correlation functions of 4,6R  with 20% noise and 

without noise are almost identical. 

 

3.3 Effect of less sensor with different sensor location 

 

Two sensors were used for structural parameter identification in Sections 3.1 and 3.2 and the 

accuracy of the proposed method has been demonstrated. A reduced number of sensors would result 

in a loss of damage information in the measured responses, which may have a negative effect on the 

identification results. To study the effect of sensor number and sensor location, only one sensor is 

used for model updating here.  

The excitation force and structural parameters used in Section 3.1 remain unchanged. The 

auto-correlation function of the vertical acceleration at different sensor points is employed for 

system identification. The identification errors of each element with respect to different sensor 

location are shown in Figure 6. It can be found that when the sensor is installed at Node 3, the 

maximum identification error is 1.8% at Element 1. The identification errors for all cases are small 

and the maximum relative error is 2.3% at Element 6 when the auto-correlation function at Node 8 is 

used. The effect of sensor location on the identification results is not significant and the proposed 

system identification technique is robust.  

In this example, the structure is excited under two unknown forces. The present method can 

identify the structural parameters using one sensor only. This cannot be achieved using the 

traditional methods, which requires that the number of sensors should be larger than the total 

number of unknown excitations and the measurements must be available at the DOFs where the 

external excitations act on5, 6.  

 

4. Experimental study 

 

Figure 7 shows the constructed steel shear-type four-story building model. The dimensions of the 

frame are shown in Figure 8. The height of each floor was 300 mm, and the floor of each story was 

composed of 25 mm thick steel plates. The two columns of each story have the same section shape 

with a width of 50 mm and a thickness of 5 mm. The beams and columns were welded together to 

form rigid joints. The bottom of the columns was welded onto a thick and solid steel plate, which was 
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fixed to the strong floor. The elastic modulus of the steel was estimated to be 200 GPa, and the mass 

density was 7850 kg/m3. 

 

4.1 Experimental setup 

 

A SINOCERA LC-04A hammer with a rubber tip was used to excite the frame. Horizontal 

acceleration responses of the frame were measured at each floor using KD1300 accelerometers. A 

commercial data logging system INV306U and its associated signal analysis package DASP V10 

were used for data acquisition. The sampling frequency was 1024 Hz, and the cut-off frequency 

range was preset at 1 Hz to 300 Hz for all test cases.  

   

4.2 Modal testing and model updating in the undamaged state 

 

The test was performed by using the hammer to hit the top floor of the frame. In each test, only output 

time history were recorded for 60 s. Typical curves of auto/cross-correlation functions ( 22R  and 

21R ) are displayed in Figure 9. Note that the input time history is for modal analysis only and not 

necessarily for model updating in the present method. 

The first four natural frequencies of the undamaged structure were extracted from the measured 

input and output using modal analysis. The results are listed in Table 1 along with the results 

calculated from the numerical model. In the numerical model, the stiffness of each floor was 

calculated from the physical configuration and material properties of the model, as listed in Table 2. 

The mass of columns, beams, and sensors were combined for each floor. The calculated mass results 

were 13.1280, 13.0976, 13.0838, and 12.4948 kg for the first, second, third, and fourth floors, 

respectively. The analytical frequencies were very close to the measured counterparts. Thus, the 

model is accurate enough for subsequent model updating. The measured four damping ratios that 

were obtained from DIAMOND22 were 1 0.740%  , 2 0.41%  , 3 0.34%  , and 4 0.27%  , 

respectively.  

The correlation function between the measurement responses for the first to the fourth floors 

and that at the second floor ( 2,1R , 2,2R , 2,3R , and 2,4R ) were used for the initial model updating. 

The acceleration responses were transformed into auto/cross-correlation functions, and the first 100 

data were employed for model updating. The updated stiffness parameters are very close to the initial 
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values listed in Table 2.  

 

4.3 Damage detection 

 

After performing the dynamic test on the intact frame structure, artificial damage was introduced by 

reducing the width of two columns in the second floor from 50 mm to 30 mm, as shown in Figure 

10. The frame was tested in a similar manner as in the undamaged state. The auto/cross-correlation 

functions ( 2,1R , 2,2R , 2,3R , and 2,4R ) are used to update the model in the damaged state. The 

identified stiffness parameters in Section 4.2 are used as the initial model for damage detection. The 

iteration process converges approximately after 10 runs, as shown in Figure 11.  

The updated stiffness parameters are shown in Table 2. The stiffness parameter of the second 

floor is reduced by 41.37% from 124.75 kN/m to 73.14 kN/m, which is very close to the real damage 

(40% stiffness reduction of the column in the second floor). The other parameters almost remain the 

same as those before the damage was introduced. The small identification errors of the undamaged 

elements (less than 5%) may be due to the measurement noise23-25. Therefore, both damage location 

and damage severity are correctly detected. These results demonstrate the accuracy of the proposed 

method. 

 

5. Conclusions 

 

This paper proposes a damage detection method based on the auto/cross-correlation function of 

acceleration responses when a structure is subjected to multiple white noise or impulse excitations. 

The damage is detected by minimizing the error between the measured auto/cross-correlation 

functions and the calculated counterparts. Numerical and experimental examples were used to 

demonstrate the effectiveness and robustness of the proposed technique. The advantages of the 

present method include the following features.  

i) The present paper proposes a damage detection method for civil engineering structures under 

multiple excitations. Previous methods for multiple excitations are rare. 

ii) The method uses the response data only (or output only).  

iii) The proposed method is robust and insensitive to measurement noise. 

iv) The proposed method does not require sensor numbers larger than the number of excitations, 

as required in other methods5-7, 16. 
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Table 1 Frequencies of the structure in the undamaged state 

Mode No. Calculated (Hz) Measured (Hz) Relative Error (%) 

1st 5.18 5.17 0.19 

2nd 15.01 15.05 -0.27 

3rd 23.19 23.52 -1.42 

4th 28.60 29.20 -2.10 

 

 

Table 2 Column flexural stiffness 

Story No. 
Initial value 

(kN/m) 

Identified result before 

damage (kN/m)   

Identified result after 

damage (kN/m)     

Stiffness reduction 

percentage (%)   

1st 104.66 102.99 107.95 -4.8 

2nd 122.21 124.75 73.14 41.4 

3rd 122.21 130.16 133.18 -2.3 

4th 122.21 117.30 116.83 0.4 
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(b) Finite element model of the cantilever beam 

 

Figure 1 Cantilever beam 
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Figure 2 Evolution of identification results of the cantilever beam 
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Figure 3 Model updating results without measurement noise 
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Figure 4 Model updating results with different noise levels 
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Figure 5 Comparison between the cross-correlation functions 4,6R  

with and without measurement noise 
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Figure 6 Identification error from different sensor locations 
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Figure 7 Laboratory steel frame model 
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Figure 8 Dimensions of the frame (unit: mm)  
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Figure 9 Auto- and cross-correlation functions 
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Figure 10 Damage of the frame 

 

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iteration No.

S
ti

ff
ne

ss
 f

ra
ct

io
n

 

 

Element 1
Element 2
Element 3
Element 4

 

  

Figure 11 Iteration with identification results 




