488 research outputs found

    P2X receptors: epithelial ion channels and regulators of salt and water transport.

    Get PDF
    When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels

    Form factors at strong coupling via a Y-system

    Full text link
    We compute form factors in planar N=4 Super Yang-Mills at strong coupling. Namely we consider the overlap between an operator insertion and 2n gluons. Through the gauge/string duality these are given by minimal surfaces in AdS space. The surfaces end on an infinite periodic sequence of null segments at the boundary of AdS. We consider surfaces that can be embedded in AdS_3. We derive set of functional equations for the cross ratios as functions of the spectral parameter. These equations are of the form of a Y-system. The integral form of the Y-system has Thermodynamics Bethe Ansatz form. The area is given by the free energy of the TBA system or critical value of Yang-Yang functional. We consider a restricted set of operators which have small conformal dimension

    DNA binding induces active site conformational change in the human TREX2 3′-exonuclease

    Get PDF
    The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Series Solution and Minimal Surfaces in AdS

    Full text link
    According to the Alday-Maldacena program the strong coupling limit of Super Yang-Mills scattering amplitudes is given by minimal area surfaces in AdS spacetime with a boundary consisting of a momentum space polygon. The string equations in AdS systematically reduce to coupled Toda type equations whose Euclidean classical solutions are then of direct relevance. While in the simplest case of AdS_3 exact solutions were known from earlier studies of the sinh-Gordon equation, there exist at present no similar exact forms for the generalized Toda equations related to AdS_d with d>=4. In this paper we develop a series method for the solution to those equations and evaluate their contribution to the finite piece of the worldsheet area. For the known sinh-Gordon case the method is seen to give results in excellent agreement with the exact answer.Comment: 19 pages, no figures; references added, one note adde

    Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface

    Get PDF
    Drug discovery efforts against the pathogen Mycobacterium tuberculosis (Mtb) have been advanced through phenotypic screens of extensive compound libraries. Such a screen revealed sulfolane 1 and indoline-5-sulfonamides 2 and 3 as potent inhibitors of mycobacterial growth. Optimization in the sulfolane series led to compound 4, which has proven activity in an in vivo murine model of Mtb infection. Here we identify the target and mode of inhibition of these compounds based on whole genome sequencing of spontaneous resistant mutants, which identified mutations locating to the essential α- and β-subunits of tryptophan synthase. Over-expression studies confirmed tryptophan synthase as the biological target. Biochemical techniques probed the mechanism of inhibition, revealing the mutant enzyme complex incurs a fitness cost but does not prevent inhibitor binding. Mapping of the resistance conferring mutations onto a low-resolution crystal structure of Mtb tryptophan synthase showed they locate to the interface between the α- and β-subunits. The discovery of anti-tubercular agents inhibiting tryptophan synthase highlights the therapeutic potential of this enzyme and draws attention to the prospect of other amino acid biosynthetic pathways as future Mtb drug targets

    Correlation function of null polygonal Wilson loops with local operators

    Full text link
    We consider the correlator of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or the chiral primary scalar) in planar N =4 super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n-11 conformal ratios. The first non-trivial case is n=4 when F depends on just one conformal ratio \zeta. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to compute for generic values of the `t Hooft coupling \lambda. We compute F(\zeta,\lambda) at leading order in both the strong coupling regime (using semiclassical AdS5 x S5 string theory) and the weak coupling regime (using perturbative gauge theory). Some results are also obtained for polygonal Wilson loops with more than four edges. Furthermore, we also discuss a connection to the relation between a correlator of local operators at null-separated positions and cusped Wilson loop suggested in arXiv:1007.3243.Comment: 36 pages, 2 figure

    Criminal and Noncriminal Psychopathy: The Devil is in the Detail

    Get PDF
    Brooks, NS ORCiD: 0000-0003-1784-099XPsychopathy is prevalent and problematic in criminal populations, but is also found to be present in noncriminal populations. In 1992, Robert Hare declared that psychopaths may also “be found in the boardroom”, which has since been followed by an interest in the issue of noncriminal, or even successful, psychopathy. In this chapter, the paradox of criminal and noncriminal psychopathy is discussed with specific attention given to the similarities and differences that account for psychopathic personality across contexts. That psychopathy is a condition typified by a constellation of traits and behaviours requires wider research across diverse populations, and thus the streams of research related to criminal and noncriminal psychopathy are presented and the implications of these contrasting streams are explored

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Get PDF
    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as ‘transition state analogue’ inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs
    corecore