4,533 research outputs found

    Case study on user knowledge and design knowledge in product form design

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Developing a user-centred Communication Pad for Cognitive and Physical Impaired People

    Get PDF

    Vertically aligned smooth ZnO nanorod films for planar device applications

    Get PDF
    The growth of smooth and continuous zinc oxide (ZnO) films, consisting of densely packed vertical ZnO nanorods with (002) crystal orientation on silicon substrates has been achieved in this work by a chemical solution method. These ZnO thin films have much stronger photoluminescence emission than those from discrete ZnO nanorods under identical conditions. Large area surface acoustic wave devices were fabricated on these films using conventional photolithography, and exhibited two well-defined resonant modes of the Sezawa wave and its harmonic mode

    The global field of multi-family offices: An institutionalist perspective

    Get PDF
    We apply the notion of the organisational field to internationally operating multi-family offices. These organisations specialise on the preservation of enterprising and geographically dispersed families’ fortunes. They provide their services across generations and countries. Based on secondary data of Bloomberg’s Top 50 Family Offices, we show that they constitute a global organisational field that comprises two clusters of homogeneity. Clients may decide between two different configurations of activities, depending on their preferences regarding asset management, resource management, family management, and service architecture. The findings also reveal that multi-family offices make relatively similar value propositions all over the world. The distinctiveness of the clusters within the field is not driven by the embeddedness of the multi-family offices in different national environments or their various degrees of international experience. Rather, it is weakly affected by two out of four possible value propositions, namely the exclusiveness and the transparency of services

    Thermodynamical Metrics and Black Hole Phase Transitions

    Full text link
    An important phase transition in black hole thermodynamics is associated with the divergence of the specific heat with fixed charge and angular momenta, yet one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's energy metric reveals this phase transition. In this paper, we introduce a new thermodynamical metric based on the Hessian matrix of several free energy. We demonstrate, by studying various charged and rotating black holes, that the divergence of the specific heat corresponds to the curvature singularity of this new metric. We further investigate metrics on all thermodynamical potentials generated by Legendre transformations and study correspondences between curvature singularities and phase transition signals. We show in general that for a system with n-pairs of intensive/extensive variables, all thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional space. We also generalize the Ruppeiner metrics and they are all conformal to the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished and the Hawking-Page phase transition clarified; to appear in JHE

    A budget feasible peer graded mechanism for iot-based crowdsourcing

    Get PDF
    We develop and extend a line of recent works on the design of mechanisms for heterogeneous tasks assignment problem in ’crowdsourcing’. The budgeted market we consider consists of multiple task requesters and multiple IoT devices as task executers. In this, each task requester is endowed with a single distinct task along with the publicly known budget. Also, each IoT device has valuations as the cost for executing the tasks and quality, which are private. Given such scenario, the objective is to select a subset of IoT devices for each task, such that the total payment made is within the allotted quota of the budget while attaining a threshold quality. For the purpose of determining the unknown quality of the IoT devices we have utilized the concept of peer grading. In this paper, we have carefully crafted a truthful budget feasible mechanism for the problem under investigation that also allows us to have the true information about the quality of the IoT devices. Further, we have extended the set-up considering the case where the tasks are divisible in nature and the IoT devices are working collaboratively, instead of, a single entity for executing each task. We have designed the budget feasible mechanisms for the extended versions. The simulations are performed in order to measure the efficacy of our proposed mechanismPeer ReviewedPostprint (author's final draft

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac
    corecore