44 research outputs found

    Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications.

    Full text link
    The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies

    Avoiding moving obstacles

    Get PDF
    To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    The neural correlates of social attention: automatic orienting to social and nonsocial cues

    Get PDF
    Previous evidence suggests that directional social cues (e.g., eye gaze) cause automatic shifts in attention toward gaze direction. It has been proposed that automatic attentional orienting driven by social cues (social orienting) involves a different neural network from automatic orienting driven by nonsocial cues. However, previous neuroimaging studies on social orienting have only compared gaze cues to symbolic cues, which typically engage top-down mechanisms. Therefore, we directly compared the neural activity involved in social orienting to that involved in purely automatic nonsocial orienting. Twenty participants performed a spatial cueing task consisting of social (gaze) cues and automatic nonsocial (peripheral squares) cues presented at short and long stimulus (cue-to-target) onset asynchronies (SOA), while undergoing fMRI. Behaviorally, a facilitation effect was found for both cue types at the short SOA, while an inhibitory effect (inhibition of return: IOR) was found only for nonsocial cues at the long SOA. Imaging results demonstrated that social and nonsocial cues recruited a largely overlapping fronto-parietal network. In addition, social cueing evoked greater activity in occipito-temporal regions at both SOAs, while nonsocial cueing recruited greater subcortical activity, but only for the long SOA (when IOR was found). A control experiment, including central arrow cues, confirmed that the occipito-temporal activity was at least in part due to the social nature of the cue and not simply to the location of presentation (central vs. peripheral). These results suggest an evolutionary trajectory for automatic orienting, from predominantly subcortical mechanisms for nonsocial orienting to predominantly cortical mechanisms for social orienting

    Visual attention and action: How cueing, direct mapping, and social interactions drive orienting

    Get PDF
    Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated

    Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty

    Get PDF
    Methods We reviewed the available literature on the influence of degradation products of MOM bearings in total hip arthroplasties on infection risk. Results Wear products were found to influence the risk of infection by hampering the immune system, by inhibiting or accelerating bacterial growth, and by a possible antibiotic resistance and heavy metal co-selection mechanism. Interpretation Whether or not the combined effects of MOM wear products make MOM bearings less or more prone to infection requires investigation in the near future

    Incidental retrieval of prior emotion mimicry.

    Get PDF
    When observing emotional expressions, similar sensorimotor states are activated in the observer, often resulting in physical mimicry. For example, when observing a smile, the zygomaticus muscles associated with smiling are activated in the observer, and when observing a frown, the corrugator brow muscles. We show that the consistency of an individual's facial emotion, whether they always frown or smile, can be encoded into memory. When the individuals are viewed at a later time expressing no emotion, muscle mimicry of the prior state can be detected, even when the emotion itself is task irrelevant. The results support simulation accounts of memory, where prior embodiments of other's states during encoding are reactivated when re-encountering a person
    corecore