26 research outputs found

    Single‐Column Model Simulations of Subtropical Marine Boundary‐Layer Cloud Transitions Under Weakening Inversions

    Get PDF
    Results are presented of the GASS/EUCLIPSE single‐column model intercomparison study on the subtropical marine low‐level cloud transition. A central goal is to establish the performance of state‐of‐the‐art boundary‐layer schemes for weather and climate models for this cloud regime, using large‐eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North‐Eastern Pacific, while one reflects conditions in the North‐Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low‐level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well‐known “too few too bright” problem. The boundary‐layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization

    Turbulent Transport in the Gray Zone: A Large Eddy Model Intercomparison Study of the CONSTRAIN Cold Air Outbreak Case

    Get PDF
    To quantify the turbulent transport at gray zone length scales between 1 and 10 km, the Lagrangian evolution of the CONSTRAIN cold air outbreak case was simulated with seven large eddy models. The case is characterized by rather large latent and sensible heat fluxes mention the meaning of SHF in the text below and remove from abstract and a rapid deepening rate of the boundary layer. In some models the entrainment velocity exceeds 4 cm/s. A significant fraction of this growth is attributed to a strong longwave radiative cooling of the inversion layer. The evolution and the timing of the breakup of the stratocumulus cloud deck differ significantly among the models. Sensitivity experiments demonstrate that a decrease in the prescribed cloud droplet number concentration and the inclusion of ice microphysics both act to speed up the thinning of the stratocumulus by enhancing the production of precipitation. In all models the formation of mesoscale fluctuations is clearly evident in the cloud fields and also in the horizontal wind velocity. Resolved vertical fluxes remain important for scales up to 10 km. The simulation results show that the resolved vertical velocity variance gradually diminishes with a coarsening of the horizontal mesh, but the total vertical fluxes of heat, moisture, and momentum are only weakly affected. This is a promising result as it demonstrates the potential use of a mesh size-dependent turbulent length scale for convective boundary layers at gray zone model resolutions

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities

    Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

    Get PDF
    Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1–5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: P. falciparum and P. knowlesi. Furthermore, little is understood about the early events in establishment of chronic infection in these species. Using a rodent model we demonstrate that only a minority of parasites from among the infecting population, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasite and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintainance of chronic P. falciparum infections7–9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Since pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections
    corecore