271 research outputs found

    An ORMOSIL-containing orthodontic acrylic resin with concomitant improvements in antimicrobial and fracture toughness properties

    Get PDF
    Global increase in patients seeking orthodontic treatment creates a demand for the use of acrylic resins in removable appliances and retainers. Orthodontic removable appliance wearers have a higher risk of oral infections that are caused by the formation of bacterial and fungal biofilms on the appliance surface. Here, we present the synthetic route for an antibacterial and antifungal organically-modified silicate (ORMOSIL) that has multiple methacryloloxy functionalities attached to a siloxane backbone (quaternary ammonium methacryloxy silicate, or QAMS). By dissolving the water-insoluble, rubbery ORMOSIL in methyl methacrylate, QAMS may be copolymerized with polymethyl methacrylate, and covalently incorporated in the pressure-processed acrylic resin. The latter demonstrated a predominantly contact-killing effect on Streptococcus mutans ATCC 36558 and Actinomyces naselundii ATCC 12104 biofilms, while inhibiting adhesion of Candida albicans ATCC 90028 on the acrylic surface. Apart from its favorable antimicrobial activities, QAMS-containing acrylic resins exhibited decreased water wettability and improved toughness, without adversely affecting the flexural strength and modulus, water sorption and solubility, when compared with QAMS-free acrylic resin. The covalently bound, antimicrobial orthodontic acrylic resin with improved toughness represents advancement over other experimental antimicrobial acrylic resin formulations, in its potential to simultaneously prevent oral infections during appliance wear, and improve the fracture resistance of those appliances.published_or_final_versio

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    Get PDF
    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 μg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism

    Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    Get PDF
    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome

    International expert consensus on the management of bleeding during VATS lung surgery

    Get PDF
    Intraoperative bleeding is the most crucial safety concern of video-assisted thoracic surgery (VATS) for a major pulmonary resection. Despite the advances in surgical techniques and devices, intraoperative bleeding is still not rare and remains the most common and potentially fatal cause of conversion from VATS to open thoracotomy. Therefore, to guide the clinical practice of VATS lung surgery, we proposed the International Interest Group on Bleeding during VATS Lung Surgery with 65 experts from 10 countries in the field to develop this consensus document. The consensus was developed based on the literature reports and expert experience from different countries. The causes and incidence of intraoperative bleeding were summarised first. Seven situations of intraoperative bleeding were collected based on clinical practice, including the bleeding from massive vessel injuries, bronchial arteries, vessel stumps, and bronchial stumps, lung parenchyma, lymph nodes, incisions, and the chest wall. The technical consensus for the management of intraoperative bleeding was achieved on these seven surgical situations by six rounds of repeated revision. Following expert consensus statements were achieved: (I) Bleeding from major vascular injuries: direct compression with suction, retracted lung, or rolled gauze is useful for bleeding control. The size and location of the vascular laceration are evaluated to decide whether the bleeding can be stopped by direct compression or by ligation. If suturing is needed, the suction-compressing angiorrhaphy technique (SCAT) is recommended. Timely conversion to thoracotomy with direct compression is required if the operator lacks experience in thoracoscopic angiorrhaphy. (II) Bronchial artery bleeding: pre-emptive clipping of bronchial artery before bronchial dissection or lymph node dissection can reduce the incidence of bleeding. Bronchial artery bleeding can be stopped by compression with the suction tip, followed by the handling of the vascular stump with energy devices or clips. (III) Bleeding from large vessel stumps and bronchial stumps: bronchial stump bleeding mostly comes from accompanying bronchial artery, which can be clipped for hemostasis. Compression for hemostasis is usually effective for bleeding at the vascular stump. Otherwise, additional use of hemostatic materials, re-staple or a suture may be necessary. (IV) Bleeding from the lung parenchyma: coagulation hemostasis is the first choice. For wounds with visible air leakage or an insufficient hemostatic effect of coagulation, suturing may be necessary. (V) Bleeding during lymph node dissection: non-grasping en-bloc lymph node dissection is recommended for the nourishing vessels of the lymph node are addressed first with this technique. If bleeding occurs at the site of lymph node dissection, energy devices can be used for hemostasis, sometimes in combination with hemostatic materials. (VI) Bleeding from chest wall incisions: the chest wall incision(s) should always be made along the upper edge of the rib(s), with good hemostasis layer by layer. Recheck the incision for hemostasis before closing the chest is recommended. (VII) Internal chest wall bleeding: it can usually be managed with electrocoagulation. For diffuse capillary bleeding with the undefined bleeding site, compression of the wound with gauze may be helpful

    Genome-wide analysis of WRKY gene family in Cucumis sativus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as <it>Arabidopsis</it>.</p> <p>Results</p> <p>We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (<it>CsWRKY</it>) genes were classified into three groups (group 1-3). Analysis of expression profiles of <it>CsWRKY </it>genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible <it>CsWRKY </it>genes were correlated with those of their putative <it>Arabidopsis WRKY (AtWRKY) </it>orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 <it>AtWRKY </it>genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among <it>CsWRKY </it>group 3 genes, which may have led to the expressional divergence of group 3 orthologs.</p> <p>Conclusions</p> <p>Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.</p

    Exploring molecular variation in Schistosoma japonicum in China

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Precision medicine driven by cancer systems biology

    Get PDF
    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance
    corecore