224 research outputs found

    Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces

    Get PDF
    Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes are, however, largely ignored. Here, we report the effects of widely used antibiotics (clindamycin, ciprofloxacin, amoxicillin, and minocycline) with different modes of action on the ecology of both the gut and the oral microbiomes in 66 healthy adults from the United Kingdom and Sweden in a two-center randomized placebo-controlled clinical trial. Feces and saliva were collected at baseline, immediately after exposure, and 1, 2, 4, and 12 months after administration of antibiotics or placebo. Sequences of 16S rRNA gene amplicons from all samples and metagenomic shotgun sequences from selected baseline and post-antibiotic-treatment sample pairs were analyzed. Additionally, metagenomic predictions based on 16S rRNA gene amplicon data were performed using PICRUSt. The salivary microbiome was found to be significantly more robust, whereas the antibiotics negatively affected the fecal microbiome: in particular, health-associated butyrate-producing species became strongly underrepresented. Additionally, exposure to different antibiotics enriched genes associated with antibiotic resistance. In conclusion, healthy individuals, exposed to a single antibiotic treatment, undergo considerable microbial shifts and enrichment in antibiotic resistance in their feces, while their salivary microbiome composition remains unexpectedly stable. The health-related consequences for the gut microbiome should increase the awareness of the individual risks involved with antibiotic use, especially in a (diseased) population with an already dysregulated microbiome. On the other hand, understanding the mechanisms behind the resilience of the oral microbiome toward ecological collapse might prove useful in combating microbial dysbiosis elsewhere in the body. IMPORTANCE Many health care professionals use antibiotic prophylaxis strategies to prevent infection after surgery. This practice is under debate since it enhances the spread of antibiotic resistance. Another important reason to avoid nonessential use of antibiotics, the impact on our microbiome, has hardly received attention. In this study, we assessed the impact of antibiotics on the human microbial ecology at two niches. We followed the oral and gut microbiomes in 66 individuals from before, immediately after, and up to 12 months after exposure to different antibiotic classes. The salivary microbiome recovered quickly and was surprisingly robust toward antibiotic-induced disturbance. The fecal microbiome was severely affected by most antibiotics: for months, health-associated butyrate-producing species became strongly underrepresented. Additionally, there was an enrichment of genes associated with antibiotic resistance. Clearly, even a single antibiotic treatment in healthy individuals contributes to the risk of resistance development and leads to long-lasting detrimental shifts in the gut microbiome

    The characteristics of patients with possible Transient Ischemic Attack and Minor Stroke in the Hunter and Manning Valley regions, Australia (the INSIST Study)

    Get PDF
    This is the final version. Available on open access from the American Academy of Neurology via the DOI in this record. Background: Transient ischemic attack (TIA) and minor stroke (TIAMS) are risk factors for stroke recurrence. Some TIAMS may be preventable by appropriate primary prevention. We aimed to recruit “possible-TIAMS” patients in the INternational comparison of Systems of care and patient outcomes In minor Stroke and TIA (INSIST) study. Methods: A prospective inception cohort study performed across 16 Hunter–Manning region, Australia, general practices in the catchment of one secondary-care acute neurovascular clinic. Possible-TIAMS patients were recruited from August 2012 to August 2016. We describe the baseline demographics, risk factors and pre-event medications of participating patients. Results: There were 613 participants (mean age; 69 ± 12 years, 335 women), and 604 (99%) were Caucasian. Hypertension was the most common risk factor (69%) followed by hyperlipidemia (52%), diabetes mellitus (17%), atrial fibrillation (AF) (17%), prior TIA (13%) or stroke (10%). Eighty-nine (36%) of the 249 participants taking antiplatelet therapy had no known history of cardiovascular morbidity. Of 102 participants with known AF, 91 (89%) had a CHA2DS2-VASc score ≥ 2 but only 47 (46%) were taking anticoagulation therapy. Among 304 participants taking an antiplatelet or anticoagulant agent, 30 (10%) had stopped taking these in the month prior to the index event. Conclusion: This study provides the first contemporary data on TIAMS or TIAMS-mimics in Australia. Community and health provider education is required to address the under-use of anticoagulation therapy in patients with known AF, possibly inappropriate use of antiplatelet therapy and possibly inappropriate discontinuation of antiplatelet or anticoagulation therapy.National Health and Medical Research Counci

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    The elusive meningococcal meningitis serogroup: a systematic review of serogroup B epidemiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive meningococcal disease (IMD), is a widely distributed, complex human disease affecting all age categories. The causative agent, <it>Neisseria meningitidis</it>, is spread through aerosol respiratory droplets. 13 different serogroups have been identified, each with varying epidemiological features including prevalence, virulence, immunogenicity, geographical and temporal distribution. Although preventative measures are available for several of the serogroups, meningococcal disease caused by serogroup B is of particular interest due to the challenge it presents concerning vaccine development.</p> <p>Methods</p> <p>A systematic review of peer reviewed studies and reports, the collection of data from national and international health resources, along with the analysis of the Multi Locus Sequence Typing database was carried out aimed at collecting information concerning serogroup B IMD and the epidemiology attached to it.</p> <p>Results</p> <p>A continuous output of related and novel STs occurring worldwide in terms of the hypervirulent clonal complexes was observed both in published studies and the MLST database in this case using the eburst software, which highlights the genetically diverse nature of serogroup B strains.</p> <p>Conclusions</p> <p>With the recent dominance of serogroup B IMD seen in many countries, along with the presence of antibiotic resistance, vaccine development needs to target areas of the bacterium which tackle this widespread and heterogeneous aspect of meningococcal meningitis disease.</p

    Molecular Dynamics Simulation of the Complex PBP-2x with Drug Cefuroxime to Explore the Drug Resistance Mechanism of Streptococcus suis R61

    Get PDF
    Drug resistance of Streptococcus suis strains is a worldwide problem for both humans and pigs. Previous studies have noted that penicillin-binding protein (PBPs) mutation is one important cause of β-lactam antibiotic resistance. In this study, we used the molecular dynamics (MD) method to study the interaction differences between cefuroxime (CES) and PBP2x within two newly sequenced Streptococcus suis: drug-sensitive strain A7, and drug-resistant strain R61. The MM-PBSA results proved that the drug bound much more tightly to PBP2x in A7 (PBP2x-A7) than to PBP2x in R61 (PBP2x-R61). This is consistent with the evidently different resistances of the two strains to cefuroxime. Hydrogen bond analysis indicated that PBP2x-A7 preferred to bind to cefuroxime rather than to PBP2x-R61. Three stable hydrogen bonds were formed by the drug and PBP2x-A7, while only one unstable bond existed between the drug and PBP2x-R61. Further, we found that the Gln569, Tyr594, and Gly596 residues were the key mutant residues contributing directly to the different binding by pair wise energy decomposition comparison. By investigating the binding mode of the drug, we found that mutant residues Ala320, Gln553, and Thr595 indirectly affected the final phenomenon by topological conformation alteration. Above all, our results revealed some details about the specific interaction between the two PBP2x proteins and the drug cefuroxime. To some degree, this explained the drug resistance mechanism of Streptococcus suis and as a result could be helpful for further drug design or improvement

    Proctitis following stereotactic body radiation therapy for prostate cancer

    Get PDF
    Background Proctitis after radiation therapy for prostate cancer remains an ongoing clinical challenge and critical quality of life issue. SBRT could minimize rectal toxicity by reducing the volume of rectum receiving high radiation doses and offers the potential radiobiologic benefits of hypofractionation. This study sought to evaluate the incidence and severity of proctitis following SBRT for prostate cancer. Methods Between February 2008 and July 2011, 269 men with clinically localized prostate cancer were treated definitively with SBRT monotherapy at Georgetown University Hospital. All patients were treated to 35-36.25Gy in 5 fractions delivered with the CyberKnife Radiosurgical System (Accuray). Rectal bleeding was recorded and scored using the CTCAE v.4. Telangiectasias were graded using the Vienna Rectoscopy Score (VRS). Proctitis was assessed via the Bowel domain of the Expanded Prostate Index Composite (EPIC)-26 at baseline and at 1, 3, 6, 9, 12, 18 and 24 months post-SBRT. Results The median age was 69 years with a median prostate volume of 39 cc. The median follow-up was 3.9 years with a minimum follow-up of two years. The 2-year actuarial incidence of late rectal bleeding ≥ grade 2 was 1.5%. Endoscopy revealed VRS Grade 2 rectal telangiectasias in 11% of patients. All proctitis symptoms increased at one month post-SBRT but returned to near-baseline with longer follow-up. The most bothersome symptoms were bowel urgency and frequency. At one month post-SBRT, 11.2% and 8.5% of patients reported a moderate to big problem with bowel urgency and frequency, respectively. The EPIC bowel summary scores declined transiently at 1 month and experienced a second, more protracted decline between 6 months and 18 months before returning to near-baseline at two years post-SBRT. Prior to treatment, 4.1% of men felt their bowel function was a moderate to big problem which increased to 11.5% one month post-SBRT but returned to near-baseline at two years post-SBRT. Conclusions In this single institution cohort, the rate and severity of proctitis observed following SBRT is low. QOL decreased on follow-up; however, our results compare favorably to those reported for patients treated with alternative radiation modalities. Future prospective randomized studies are needed to confirm these observations

    Decrease in Pneumococcal Co-Colonization following Vaccination with the Seven-Valent Pneumococcal Conjugate Vaccine

    Get PDF
    Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines

    Specificity and disease in the ubiquitin system

    Get PDF
    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation
    corecore