181 research outputs found

    Advanced polymeric membranes as biomaterials based on marine sources envisaging the regeneration of human tissues

    Get PDF
    The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.The authors would like to acknowledge the Portuguese Foundation of Science and Technology (FCT) for Ph.D. fellowship (D. N. Carvalho, under the scope of doctoral program TERM&SC, ref. PD/BD/143044/2018), post-doctoral fellowship (L.C. Rodrigues, ref. SFRH/BPD/93697/2013) and research project with ref. PTDC/CTM-CTM/29813/2017-(POCI-01-0145-FEDER-029813). The authors also thank Jellagen Ltd. (UK) for the provision of purified jellyfish collagen and Julio Maroto (Fundación CETMAR, Vigo, Spain) for the kind offer of the squid pens for chitosan production.This work has been partially funded by ERDF under the scope of the Atlantic Area Program through project EAPA_151/2016 (BLUEHUMAN)

    The European Photon Imaging Camera on XMM-Newton: The MOS Cameras

    Get PDF
    The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30 arcmin diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full closed loop thermal control. A radio-active source is fitted for internal calibration. Data are processed on-board to save telemetry by removing cosmic ray tracks, and generating X-ray event files; a variety of different instrument modes are available to increase the dynamic range of the instrument and to enable fast timing. The instruments were calibrated using laboratory X-ray beams, and synchrotron generated monochromatic X-ray beams before launch; in-orbit calibration makes use of a variety of celestial X-ray targets. The current calibration is better than 10% over the entire energy range of 0.2 to 10 keV. All three instruments survived launch and are performing nominally in orbit. In particular full field-of-view coverage is available, all electronic modes work, and the energy resolution is close to pre-launch values. Radiation damage is well within pre-launch predictions and does not yet impact on the energy resolution. The scientific results from EPIC amply fulfil pre-launch expectations.Comment: 9 pages, 11 figures, accepted for publication in the A&A Special Issue on XMM-Newto

    Simvastatin for patients with Acute Respiratory Distress Syndrome: long term outcomes and cost-effectiveness from a randomised controlled trial

    Get PDF
    Background: Simvastatin therapy for patients with ARDS has been shown to be safe and associated with minimal adverse effects, but it does not improve clinical outcomes. The aim of this research was to report on mortality and cost-effectiveness of simvastatin in patients with ARDS at 12 months. Methods: A cost-utility analysis alongside a multicentre, double-blind, randomised controlled trial carried out in the UK and Ireland. Five hundred and forty intubated and mechanically ventilated patients with acute respiratory distress syndrome were randomly assigned (1:1) to receive once-daily simvastatin (at a dose of 80 mg) or identical placebo tablets enterally for up to 28 days. Results: Mortality was lower in the simvastatin group (31.8%; 95% CI 26.1, 37.5) compared to the placebo group (37.3%; 95% CI 31.6, 43.0) at 12 months although this was not significant. Simvastatin was associated with statistically significant QALY gain (incremental QALYs 0.064, 95% CI 0.002, 0.127) compared to placebo. Simvastatin was also less costly (incremental total costs –£3601, 95% CI –8061, 859). At a willingness-to-pay threshold of £20,000 per QALY the probability of simvastatin being cost-effective was 99%. Sensitivity analyses indicated that the results were robust to changes in methodological assumptions with the probability of cost-effectiveness never dropping below 90%. Conclusion: Simvastatin was found to be cost-effective for the treatment of ARDS, being associated with both a significant QALY gain and a cost saving. There was no significant reduction in mortality at 12 months

    Stroke risk associated with balloon based catheter ablation for atrial fibrillation: Rationale and design of the MACPAF Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheter ablation of the pulmonary veins has become accepted as a standard therapeutic approach for symptomatic paroxysmal atrial fibrillation (AF). However, there is some evidence for an ablation associated (silent) stroke risk, lowering the hope to limit the stroke risk by restoration of rhythm over rate control in AF. The purpose of the prospective randomized single-center study "Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal Atrial Fibrillation" (MACPAF) is to compare the efficacy and safety of two balloon based pulmonary vein ablation systems in patients with symptomatic paroxysmal AF.</p> <p>Methods/Design</p> <p>Patients are randomized 1:1 for the Arctic Front<sup>® </sup>or the HD Mesh Ablator<sup>® </sup>catheter for left atrial catheter ablation (LACA). The predefined endpoints will be assessed by brain magnetic resonance imaging (MRI), neuro(psycho)logical tests and a subcutaneously implanted reveal recorder for AF detection. According to statistics 108 patients will be enrolled.</p> <p>Discussion</p> <p>Findings from the MACPAF trial will help to balance the benefits and risks of LACA for symptomatic paroxysmal AF. Using serial brain MRIs might help to identify patients at risk for LACA-associated cerebral thromboembolism. Potential limitations of the study are the single-center design, the existence of a variety of LACA-catheters, the missing placebo-group and the impossibility to assess the primary endpoint in a blinded fashion.</p> <p>Trial registration</p> <p>clinicaltrials.gov NCT01061931</p

    High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    Get PDF
    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.Comment: LATEX format: 10 pages and 3 figures: accepted for publication in the Astrophysical Journal Letter

    Rapid automatic segmentation of abnormal tissue in late gadolinium enhancement cardiovascular magnetic resonance images for improved management of long-standing persistent atrial fibrillation

    Get PDF
    Background: Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR’s diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre. Methods: Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels. Results: Global normalized intensity threshold levels T PRE = 1 1/4 and T POST = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres may not be usable for clinical studies performed in our centre. Conclusions: The proposed technique has great potential for successful employment in the AF management within our centre. It provides a highly desirable validation of the LGE CMR technique for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement in AF studies

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF
    corecore