4,653 research outputs found
Pathogenesis of sudden death following water immersion (immersion syndrome)
Sympathetic activity under cold stress is investigated. Predominantly vagal cardio-depressive reflexes are discussed besides currently known mechanisms of sudden death after water immersion. Pronounced circulatory centralization in diving animals as well as following exposure in cold water indicates additional sympathetic activity. In cold water baths of 15 C, measurements indicate an increase in plasma catecholamine levels by more than 300 percent. This may lead to cardiac arrhythmias by the following mechanisms: cold water essentially induces sinus bradycardia; brady-and tachycardiarrhythmias may supervene as secondary complications; sinusbradycardia may be enhanced by sympathetic hypertonus. Furthermore, ectopic dysrhythmias are liable to be induced by the strictly sympathetic innervation of the ventricle. Myocardial ischemia following a rise in peripheral blood pressure constitutes another arrhythmogenic factor. Some of these reactions are enhanced by alcohol intoxication
COLUMBIA MEDICAL CENTER AND THE COCAINE ADDICTED PHARMACIST (A)
Tom Zenor, a pharmacist for Columbia Medical Center, became addicted to cocaine. He checked himself into a rehabilitation center and, upon request, was placed on leave as allowed by the Family Medical Leave Act (FMLA). During his FMLA leave the company decided to terminate his employment upon the completion of his twelve week leave of absence. Columbia, in an attempt to be proactive, is considering any legal recourse Zenor might attempt. Columbia’s Human Resources manager, Carmen Estrada, is preparing evidence to defend the company against a potential Americans with Disabilities Act (ADA) lawsuit. Her primary concern is that Zenor will claim that his cocaine addiction is a qualified disability under the ADA. (Contact author for a copy of the complete report.)Personnel, Unjust Termination, At-Will Employment
Results on Transversal and Axial Motions of a System of Two Beams Coupled to a Joint through Two Legs
In recent years there has been renewed interest in inflatable-rigidizable space structures because of the efficiency they offer in packaging during boost-to-orbit. However, much research is still needed to better understand dynamic response characteristics, including inherent damping, of truss structures fabricated with these advanced material systems. We present results of an ongoing research related to a model consisting of an assembly of two beams with Kelvin-Voight damping, coupled to a simple joint through two legs. The beams are clamped at one end but at the other end they satisfy a boundary condition given in terms of an ODE coupling boundary terms of both beams, which reflects geometric compatibility conditions. The system is then written as a second order differential equation in an appropriate Hilbert space in which well-posedness, exponential stability as well as other regularity properties of the solutions can be obtained. Two different finite dimensional approximation schemes for the solutions of the system are presented. Numerical results are presented and comparisons are made.Fil: Burns, J. A.. Interdisciplinary Center for Applied Mathematics; Estados UnidosFil: Cliff, E. M.. Interdisciplinary Center for Applied Mathematics; Estados UnidosFil: Liu, Z.. University of Minnesota at Duluth; Estados UnidosFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentin
Columbia Medical Center and the Cocaine-Addicted Pharmacist: Unjust Termination? (B)
Tom Zenor, a pharmacist for Columbia Medical Center, became addicted to cocaine. He checked himself into a rehabilitation center and, upon request, was placed on leave as allowed by the Family Medical Leave Act (FMLA). Upon his return, the company decided to terminate his employment. Zenor was upset at the dismissal, which he saw as unjust. Columbia Medical Center, in an attempt to be proactive, sought to consider any legal recourse Zenor might attempt. Columbia’s Human Resources manager, Carmen Estrada, attempted to construct evidence to defend the company against a potential unjust discharge case. The company operated in Texas, which was an “at-will” state. Nonetheless, Estrada had concerns which included whether Zenor could claim an exception to the Doctrine of Employment at-will, and if including a disclaimer in an employee handbook that employees are retained “at-will” provided adequate legal protection for the organization. (Contact author for a copy of the complete report.)Personnel, Addiction, ADA
Efeito do espaçamento de plantio e do teor de água na massa específica aparente e massa de mil grãos dos grãos de soja.
Computable randomness is about more than probabilities
We introduce a notion of computable randomness for infinite sequences that
generalises the classical version in two important ways. First, our definition
of computable randomness is associated with imprecise probability models, in
the sense that we consider lower expectations (or sets of probabilities)
instead of classical 'precise' probabilities. Secondly, instead of binary
sequences, we consider sequences whose elements take values in some finite
sample space. Interestingly, we find that every sequence is computably random
with respect to at least one lower expectation, and that lower expectations
that are more informative have fewer computably random sequences. This leads to
the intriguing question whether every sequence is computably random with
respect to a unique most informative lower expectation. We study this question
in some detail and provide a partial answer
A Computationally Efficient Modeling Code for Sh-Waves in Austenitic Welds Using an Explicit Space-Time Green-Function
For ultrasonic inspection of austenitic welds and cladded components horizontally polarized shear (SH) waves — as generated by electromagnetic acoustic transducers (EMATs) — have certain benefits compared with quasi-vertically polarized shear and quasi-pressure waves. SH-waves suffer the least distortion of all three wave modes when propagated through anisotropic weld material and no energy is lost through mode conversion at the steel/free surface or base metal/weld interfaces. To explain experimentally observed phenomena and to predict the cases where SH-waves might be best employed, modeling of the respective wave propagation effects is useful. In this contribution, a computationally efficient modeling code is presented for SH-waves propagating in transversely isotropic media, thus particularly applicable to ideally fiber-textured austenitic weld material. An explicit space-time domain far-field representation of Green’s dyadic function has been derived with respect to the wave type under concern, the fiber direction being included as a free parameter. The obtained relationships have been applied to the Generalized Point-Source-Synthesis method (GPSS [1,2]) to model radiation, propagation and scattering effects. The code thus improved — SH-GPSS— is characterized by a considerable reduction of computer run-time and is therefore particularly convenient in view of a respective extension to inhomogeneous weldments. Numerical results are presented for both continuous wave and time-dependent rf-impulse modeling for austenitic weld metal specimens, covering field profiles as well as wave front snapshots for a phased array EMAT-probe
Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing
- …
