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Abstract. In recent years there has been renewed interest in inflatable-rigidizable space struc-
tures because of the efficiency they offer in packaging during boost-totoHutvever, much
research is still needed to better understand dynamic response characteristics, including inher-
ent damping, of truss structures fabricated with these advanced material systems. We present
results of an ongoing research related to a model consisting of an assembly of two beams with
Kelvin-Voight damping, coupled to a simple joint through two legs. The beams are clamped
at one end but at the other end they satisfy a boundary condition given in terms of an ODE
coupling boundary terms of both beams, which reflects geometric compatibility conditions. The
system is then written as a second order differential equation in an appropriate Hilbert space
in which well-posedness, exponential stability as well as other regularity properties of the solu-
tions can be obtained. Two different finite dimensional approximation schemes for the solutions
of the system are presented. Numerical results are presented and comparisons are made.
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1 INTRODUCTION: THE MODEL

We consider the joint-legs-beams system is depicted in Figure 1. This system arises in the study
of the dynamics of cross-sections of the truss-structure depicted in Figure 2. In our model, both
beams are clamped at the engds= 0, i = 1,2 and can vibrate in the plane. The transverse
(bending) deformation of beairis denoted byv'(t, s;) while the longitudinal (axial) deforma-

tion is denoted by (¢, s;), where0 < s; < L;, i = 1, 2. Kelvin-Voight damping is considered

for both longitudinal and transverse beam motions. The joint configuration is described by the
planar Cartesian displacements of the pivot, denoted byandy(¢) and by#d,(¢), 6»(t), where

0;(t) denotes the angle between leand positiver axis. The physical parameters and variables
used in the model are as follows:

e L;, A;, I, E;, p;: length, cross section area, moment of inertia, Young’s modulus and

mass density of beam: = 1, 2.

e 1(t), y(t): horizontal and vertical displacements of the joint 0.

6;(t): angle of legi with the horizontal; = 1,2,¢ > 0.

o /;, m;, I}, d;: length, mass, moment of inertia about center of mass and distance from
pivot to center of mass of legi = 1, 2.

o I =1+ m;d?: moment of inertia of leg about pivot; = 1, 2.

e 1, Vi, b, ki Kelvin-Voight damping parameters in the axial motions, in the transverse
bending, internal viscous joint damping and stiffness parameters.

e m,: mass of the pivot.

e m = my + my + m, : total mass of the joint system.

e (1, py. angles at equilibrium of beam 1 with respect to the posijieis and of beam 2

with respect to the negativeaxis, respectively.

e F(t), N;(t), M;(t): extensional force, shear force and bending moment at the;end.;
of beam.

e Mg(t): internal torque exerted on joint-leg 1 by joint-leg 2.

1.1 Constitutive equations

For the transverse (bending) motions of the beams, an Euler-Bernoulli model with Kelvin-
Voight damping is considered, i.e.

O*w'(t, s;) 02 O*w'(t, s;) Pw'(t,s;)]
P T Bs? {El Bs? T as20t } =5 @
wi(t,0) = THI =0 )

The longitudinal (axial) motions of the beams, also with Kelvin-Voight damping, are de-
scribed by:

O?u'(t, s;) 0 ou'(t, s;) Pu'(t,s)]
pz‘AiT ~ B [EZAZG—SZ—FMW} = 0, 3)
u'(t,0) = 0. 4)
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Figure 1: Basic structure of the joint-legs-beams system

Figure 2: Truss-structure

For the joint-legs, from Newtonian mechanics, we obtain:

m i (t) — mady sin 0y ()6 (t) — mady sin 0o (t)0(t)
= mydy cos 01 (1)1 (t)% 4 mads cos 05(t)05(t)? + Fy(t) cos 0, (t)
— Ny (t)sin 0y (t) + F5(t) cos Oa(t) — No(t) sin ba(t), (5)

m y(t) + m1d1 COS 01 (t)Ql (t) + deQ COS 92 (t)@g (t)
= m1d1 sin 91 (t)91 (t)2 -+ m2d2 sin 02 (t)92 <t>2 —+ F1 (t) sin 91 (t)
+N1(t) cos 01 (t) + Fo(t) sinOs(t) + No(t) cos b5(t), (6)

+mady [£(t) sin 6 (t) — §i(t) cos 01(t)] (7)
1 O2(t) = —Mg(t) + My(t) + Ly No(t)
+ m2d2 [I‘(t) sin 92 (t) - y(t) COS 92 (t)} . (8)
Since the continuum equations (1)-(4) reflect small deflection theory, we shall consider equa-

tions (5)-(8), linearized about’ = y° = i = §° = 69 = 6) = 0 andd) = I — ¢,
09 = —Z + ¢,. These equations are:

mZ(t) — myd; cos 0161 (t) + mads cos gpﬁé(t)
= Fi(t)sing; — Ni(t) cos @1 + Fo(t) sin o + No(t) cos pa, (9)

m(t) + myd; sin @151 () + mads sin cpgéz(t)
= Fi(t) cos o1 + Ny () sin gy — Fo(t) cos oo + No(t) sin s, (20)
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1461(t) = Mo (t) + Ma(t) + (0 Ni(t) + mudy [£(t) cos o1 — §i(t) sin o] (11)

1305 (t) = —Mg(t)+My(t)+ Lo Na(t) —mads [i(t) cos a + §j(t) sin @o] . (12)

It must be noted that in equations (9)-(12)t) denotes the perturbation in the angle between
leg: and the positive: axis. Although more generality is possible, in the present formulation we
shall consider only linear elastic and viscous effects in the internal moment, assuming therefore
Mg(t) in the form:

Mof(t) = k (62() = 62(1)) + b (2(8) = 6:(1)) - (13)

1.2 Compatibility conditions

First, geometric compatibility conditions require that the Cartesian position of the beams tip
and the joint-legs remain the same, and also that the end-slope of the beam be the same as the
slope of the leg. These conditions translate into the following equations.

(2(t) — 10, (t) cos 1 4+ w'(t, Ly) cos 1 4 u' (¢, Ly) sin gy = 0
y(t) + 101 (t) sin 1 — wl (¢, Ly) sin gy + u! (¢, L1) cos o1 = 0 (14)
\Ql(t) + w;(t, Ll) =0

(x(t) + La04(t) cos o — w(t, Lo) cos gy + u*(t, L) sin s = 0
y(t) + £abs(t) sin gy — w?(t, La) sin gy — u?(t, Ly) cos s = 0 (15)
[ 02(t) + wi(t, Ls) =0

These equations can also be written in the form:

u'(t,Ly) = —z(t) sinp; — y(t) cos ¢y
wh(t, L) = —x(t) cos o1 + y(t) sin o1 + €10, (t) (16)
w; t7 Ll) —91 (t)
)

(
(
u?(t, Ly) = —x(t) sin oy + y(t) cos s

w(t, Ly) = x(t) cos gy + y(t) sin g + la05(t) 17)
wi(t, Ly) = —b5(t)

Also, the Kelvin-Voight constitutive model requires the following compatibility conditions.
For the bending moments at the interfaces:

{El]lwsl,s(t7 Ly) + g (¢, Lr) = Mi(t) (18)

By Lyw?(t, La) 4 22, (t, Ly) = Ma(t)
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For the shear forces at the interfaces:

{% (Bulyw}, + ) (8 L) = Ni(t) (19)
o (Balywl, + 7212, (¢, Ls) = No(t)
For the axial forces at the interfaces:
{% (By Ayt + ) (¢, Ly) = Fi(2) (20)
2 (ByAsu® 4 poti®) (t, Lo) = F(t)

The apparently cumbersome notation for spatial derivatives in equations (19) and (20) is nec-
essary because although the sums in each parentheses are smooth, each one of the summands
need not be (see for instafand').

2 ENERGY EQUATIONS AND THE DISSIPATIVENESS OF THE SYSTEM

Multiplying equations (1) by (¢, s), integrating by parts and using boundary conditions (2)
and compatibility conditions (18) and (19), we obtain for each beam an equation of the form

0 = % {%/0 [PA(U)P —+ E](wss)ﬂ dS} + w(t, L)N(t) — ws(t, L)M(t) + ,7/0 wzs ds
— %E(beam— w) +w(t, L)N(t) — w,(t, L)M(t) + 7/OL (tnes)? ds, (21)

whereE(beam— w) is the energy of the beam due to transverse motions, defined as
1 L
E(beam— w) = 5/ [pA()* + EI(ws,)?] ds. (22)
0

Now, using equations (16) and (17) to replacg, L) andw,(t, L) in (21) and adding to-
gether the equations for both beams we obtain

Ly
0 = % [E(beam— w') + E(beam— w?)] +71/
0

(@l,)? ds + 7 /0 T (@2)? ds
+ Ou(t)My(t) + O5(t) Ma(t) + Na(t) [5191 (t) — @(t) cos 1 + y(t) sin 901]

TNt [@92@) + i(t) cos s + (1) sin @2] . (23)

Similarly, multiplying equations (3) by, integrating by parts and using boundary conditions
(4) and compatibility conditions (20) we obtain for each beam an equation of the form

- % {%/O [pA(1)? + EA(u,)?] ds} — uft, L)% [EAu(t, L) — pa(t, L)]

L 9 d . b
+ o /0 (i) ds = 5 B(beam—u) — i(t, L)F(1) + p /D (0,)? ds,
(24)
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whereE(beam— u) is the energy of the beam due to longitudinal motions, defined as

E(beam—u) = %/0 [pA(0)* + EA(us)?] ds. (25)

Now, adding together the equations for both beams and using equations (16) and (17) to replace
u!(t, Ly) andu?(t, Ly) we obtain

d 1 9 Lo La 0o
0 = - [E(beam— u') + E(beam— u?)] +ﬂ1/ (ur)” ds +u2/0 (a2)” ds
+  Fi(t) [£(2) sin gy + §(t) cos ] + Fo(t) [£(2) sin gz — §(t) cos o] . (26)

Now we multiply equations (9), (10), (11), (12) byt), 4(t), 61(t) andéy(t), respectively, and
add them together to obtain

0 = il{m(m(t»%(y(tw+lé<91<t>>2+f%<92<t>>2

dt 2
+ &(t) (—mldl cos 10, () + mads cos @2é2<t) — Fi(t) sin ¢y
+ Ny (t) cos py — Fy(t) sin o — Na(t) cos gog)
+ y(t) <m1d1 sin 10, (t) + mads sin gpgég(t) — Fi(t) cos ¢
— N (t) sin gy + F5(t) cos g — Na(t) sin g02>

+ 9:1(15) (=Mog(t) — Mi(t) — (aN1(t) — madi@(t) cos 1 + mqdig(t) sin gy )
+ 6’2(t) (MQ(t) — Mg(t) — EQNQ(t) + deQZL‘(t) COS P2 + mgdgy(t) sin 902) .

(27)
Adding together equations (23), (26) and (27) we obtain
%{E(beam— w') + E(beam— w?) + E(beam— u') + E(beam— v?)
(<x<t>> GO)*) + GO + 13 (6:(0))°
+m1d1( #(£)01 (1) cos o1 + ()01 (1) Sincp1>
+ mads (m ) cos s + 5(t)ba(t) sin @2) }
L
_ —%é ()’ ds—»% (a2.)* ds
—in [ L) ds = [ ()7 ds = M(0)lia(t) — ()] (28)
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Recalling now thatVq(t) = k[fa(t) — 6:1(t)] + b[02(t) — 61(t)] (see equation (13) )}, =
I} +m;d?, i =1, 2, and thatn = m4 + ms + m,, equation (28) above can be written as

%{E(beam— w') + E(beam— w?) + E(beam— u') + E(beam— u?) + E(joint-legs)}

_ ’“/o (i) ds — “2/0 T (i2)? ds — blds(t) — B ()P, (29)

2 E(joint-legs) = m ( ((1))* + (§(t))*) + I5(61())* + I5(6a(t))”
+mydy (—m’(t)él(t) cos 1 + ()6, () sin @1)
+ mady (a’:(t)éz(t) cos @a + §(t)fa(t) sin @2) 4k (0a(t) — 0:(1))?
= m (:t(t) — dfi(t) cos @1)2 +my (y(t) + iy (t) sin gpl)Q

+my (j:(t) + dyfia (t) cos gog) " b (y(t) + dafia (1) sin <p2> i
+my, (2(t)° +9(t)%) + LL01 () + I705(t)% + k (02(t) — 01(2))* . (30)

Note that by (29), ity; = 72 = u; = us = b = 0 then the system is conservative and it is
dissipative otherwise.
In Burns et alf system (1)-(17) was written as a second order differential equation of the

form X(t) + A (SX(t) + X(t)) = 0, in an appropriate Hilbert spac¥. This space is a
product of spaces describing the distributed beam deflections and a finite dimensional space that

projects important features at the joint boundary. In this context, the total energy of the system,
i.e. the expression within brackets in the left hand side of (29), takes the gk X) =

: <||X(t)||${ + \|A%X(t)||% . Also, using this abstract framework, the well-posedness of the

system was proved and it was shown that solutions decay exponentially in the case in which the
damping parametersg, ., u1, 1o are all strictly positive. A characterization of the spectrum
was also given.

3 FINITE DIMENSIONAL APPROXIMATIONS

In this section we will develop finite dimensional approximations for the solutions of system

(1)-(17).
3.1 A Projection Method

Transverse motions of the beamsWe use a Galerkin procedure with cubic splines to approx-
imatew’(t, s;) by Y7, 25(t)bi(s:), 7 = 1,2,0 < s; < L;. Here theb}’s and theb?’s are cubic
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splines in[0, L;] and [0, L] respectively, modified as to satisfy the boundary conditions (2),
wi(t,0) = wl (t,0) = 0, i.e. thebi's satisfyb’(0) = b'(0) = 0,j = 1,2,...n,, i = 1,2. The
weak formulation of equation (1) for each one of the beams, after integration by parts leads to:

L L
pA/ wy(t, s) ds—l—EI/ Wes(t, 8)Pss () ds+7/ West (T, 8)dss(s) ds
0

= Ests(t L)¢s( ) E[wsss<t L)¢(L) + ’szst(ta L)(bs(L) - szsst(ta L)¢(L)
= ¢s( ) [E]wss<t7 L) + ’ywsst@ L)] ¢(L) [E]wsss(t> L) + szsst(tv L)]
= ¢s(L)M(t) — ¢p(L)N(t) (by virtue of equations (18) and (19))

where the¢'’s are test functions. Using the same cubic splines as test functions, the above
equation can be written in matrix form as

pAMP3(t) + ETH 2(t) +yH 2(t) = V' (L)M(t) — b(L)N(t),

wherez(t) = (z1(t), z(t), ..., zn, (¢t ))T b(s) = (by(s),ba(s), ... bnw( ))T , andM®, H® are
the matrices given by’ = (fo i ds), Hb = <f0 b (s)bi(s
We have one equation like this for each beam. We wrlte these equations in the form:

pr AT MPEN () + By HP 2 () 4+ y HY2' () = bY (L)) My (t) — b' (Ly) Ny (t),

poAa MEEA(t) + Ex Iy HY22(t) + o HYZ2 () = b (La) Ma(t) — b*(La) No(t).

By denoting Wlthz( ) the finite dimensional state variable for the transverse motions of both

t
beamsz(t) = ( 8 D , the above two equations can be written as

At

M (t)

o . (1)

No(t)

where
- plAlMlb 0 - _ElllHjE[) 0
Mo = ( 0 pa) M= 0 —mpm) (32)
. —ﬁ/lH{) 0 - bll(L1> —bl(Ll) 0 0

Bu = ( 0 —VQHS) o G ( 0 0 (L) L) &
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Longitudinal motions of the beams. We now proceed to do the same for the longitudinal
displacements of the beams. After integration by parts, and using the boundary conditions (4)
ats = 0, the weak formulation of equation (3)for each one of the beams takes the form:

L L L
0 = pA [ wlt)o(s)ds + BA [ u(ts)on(s)dstn [ ualt.s)on(s)ds
0 0 0
= FAu,(t,L)p(L) + pux(t, L)p(L)
F(t)o(L) (by virtue of the compatibility conditions (20))
where thep's are test functions. We approximate the longitudinal displaceméfits;;) of each
beam by by) " 74 (t)l3(s:), i = 1,2,0 < s; < L;. Here thel}’s and thel?’s are linear splines
in [0, L;] and [0, Lo, respectlvely, modified as to satisfy the boundary conditions (4), i.e. the
l“s satlsfyl’( )=0,j=1,2,...,n,,i=1,2. Using the same linear splines as test functions,

the equation above can be written in the fqmmZW (t) + EAK r(t) + uK%(t) = I(L)F(t),
wherer(t) = (r1(t),r2(t), . ..., ()", 1(s) = (I (s ) Io(s), . 1o, ()7, ande K are the

mass and stiffness matrices given by = <f0 ds), Kt = (fo i ds>
We have an equation like this for each beam We write them in the form

o AL M () + By ALK (8) + p Ky (1) = 1 (Lh) Fy (1),

pa Ao My (t) + Ea AsKyr® (t) + pa Kira(t) = 1*(Lo) Fa(t).

By denoting withr(¢) the finite dimensional state variable for the longitudinal motions of both

1
beamsy(t) = (:: (t)), the above two equations can be written as

Mi(t) = Aur(t) + Bui(t) + C, A1) , (34)
Fy(t)
where
. plAlMle 0 . —ElAle 0
M“_( 0 P2 A M ) Ay = 0 By Ay KS ) (35)
. (—mK{ 0 L (ML) 0
B“—( 0 —u2K§>’ Cu—( 0 (L)) 9

State equations for the joint-legs.We define the state variable for the joint-legs system to be

n(t) = (xz(t) y(t) 61(t) Og(t))T. The linearized equations (9), (10), (11), (12), with, as
in (13), can then be written in matrix form as

Myij(t) = Ayn(t) + By n(t) + Cy F'(2), (37)
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where
—mldlcoscpl m2d2COSg02
My = (PT diag([l,Ié))’ with P = . , !
mydy sinp;  Mmads sin g
(38)
and
00 O 0 00 0 O
00 O 0 00 0 O
D=1 0 -k k| Biz=lo o = v | (39)
00 k£ -k 00 b -b
M (t)
Ni(t)
- MQ(t) -
F(t) = Ng(t) s and 077 = [07771 07772], (40)
Fi(t)
Fy(t)
with
0 —cospr 0 cospy sing;  sin s
. |0 singp; 0 sing, . | cospr —cosp
Co=|1 7 0 and Cpo=| "] 0 (41)
0 0 1 Iy 0 0

State equations for the completely discretized beams-joint-legs systeM/e define now our
discretized state variable for the complete beams-legs-joint systengig be: (z(t), r(t), n(t))",
and letn = 2(n,, + n,) + 4. Equations (31), (34) and (37) can then be written in terms (of
in the form

MZ(t) = AZ(t)+ BZ(t) + CF(t), (42)
whereM, A and B aren x n mass, stiffness and damping matrices, respectively(argdan
n x 6 matrix defined by

My O O Ay 0 O By 0 O Cw O
Mﬁ(omo)7 Ai(OAu0>’ Bi(oBu0>, Ci(o Cu). (43)
0 0 M, 0 0 A, 0 0 By Cna Cnp2
Next, using the recently introduced finite dimensional Galerkin approximations fars;) and

u'(t,s;) , 1 = 1,2, it turns out that the geometric compatibility conditions (equations (16) and
(17)), can be writen, in an appropriate order, in the form:

)| = GZ(@#) = 0, (44)
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cT o C7,
wheredG is the matrixG = . We then observe that this matrix is exactly

0o cT (7,
the transposed of the matriX defined in (43) and therefore, the compatibility equation (44)
above simply takes the form

cTZ(t) = 0. (45)

Finally, the completely discretized system of equations consists then of the non-homogeneous
system ofn second order ODE’s (42) plus the differential-algebraic compatibility conditions
given by equation (45), i.e

{MZ(t) = AZ(t) + BZ(t) + CF(t) (46)

CTZ(t) =0.
Note thatC” is a non-squaré x n matrix.

3.1.1 Enforcing the constraintC” Z(t) = 0 into the dynamic equations

The question that immediately arises is how to actually solve system (46). We proceed now to
develop two different methods to accomplish this goal. Multiplying the first equation in (46)
first by CT M ~! and then using the second equation in its second order differential form, we
obtain

CF(t) = —C(C"M™'C) " CT M (AZ(t) + BZ(t))
= P (Az() + BZ(1))., (47)
where
P=c(CcTM'C) T CTM, (48)

One can immediately verify tha® is the orthogonal projection dR™ onto the orthogonal
complement of the null space 6f' M/~! or, equivalently onto the preimage undef of the
range ofC, i.e. P : R — N(CTM~Y)* = R(M~1C) = M~'R(C).

Note: The invertibility of the matrixC* M ~1C above is an immediate consequence of the
fact that)M, being a mass matrix (more precisely diagonal of mass matrices), is symmetric and
positive definite (sd/ ! has the same properties) and the mattixhas full rank. This implies
that V(CTM~1C) = N(C) = {0}.

Replacing with (47) and (48) into (46) we obtain

MZ(@t) = (IT-P) (AZ(t)+BZ(t)> - P <AZ(t)+BZ(t)), (49)
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whereP = I —P = I — C(CTM~'C)~'CT M~ is the orthogonal projection onto the null
space ofC" M ~! or equivalently, onto the image und&f of the null space of’?, i.e.

P R = N(CTM™Y) = MN(CT).

Written in first order form, equation (49) takes the form
d(ZtN _( 0 I 2(t) (50)
dt \Z(t) M-'PA M~ 'PB) \Z(t))"

Observation This approach can be easily generalized to the case in which the algebraic con-
straint in (46) is replaced bg'Z(t) = 0 whereC' is an arbitraryk x n matrix (¢ < n), and it
also carries over to the infinite dimensional case.

3.1.2 Another way of enforcing an algebraic constraint: state projection into the null
space of the constraint operator

Let us consider once again the system (46) with an arbitrary full-rank constraint opErator
R" — R* (k < n):

Mz(t) = Az(t) + B:(t) + Cg(t)
Fz(t)=0

Hereg : [0,00) — IR¥, C'is ann x k matrix andA, B and M are as in (46). By applying M !

to the first equation, assuming invertibility 8fA/—1C and enforcing the second order differ-
ential form of the constraint equation, we find as before #iétis uniquely determined from
z(t) and A, B, C andF. More preciselyg(t) = (FM~'C)"'FM—1(Az(t) + Bz(t)), and
thereforeM ~'Cg(t) = —P*M~! (Az(t) + Bi(t)), whereP* = M 'C(FM~'C)"'F =
FT(FFT)~'F, is the orthogonal projection dR" onto the orthogonal complement of the ker-
nelonF,ie. P*: R* — IN(F)]*. Note thatP* is independent of” for any C for which
FM~'C is invertible. Hence, the dynamic equation becomes

2(t) = (I —P*)YM ' (Az(t) + B:(t)) = PM ' (Az(t) + B:(t)),
whereP = [ — P* = [ — FI(FFT)"'F is the orthogonal projection dR™ onto N'(F).
Now, for anyz € H we write z = z; @ 2o, With 2; € N (F) andz, € [N(F)]*. Using this

decomposition and enforcing now the constrdinft) = 0 we obtainz,(t) = 0, z(t) = 21 (t) =
Pz(t), and

B(t) = PM 7 (Az(t) + B(1))
= [I-F'(FF")'F] M~ (Az(t) + B4(t)),
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or, written in first order form

where

PM—*A PM~'B
By performing row operations, it can be immediately seen that

det]\ — A] = det[\’] —APM "B —PM 'A].

Note that in the case of no damping (= 0), the eigenvalues a#l are the square roots of

the eigenvalues oPM ' A. SinceA is negative definite)/ ! positive definite andP is a
projection,PM ! A is negative semidefinite and its eigenvalues are all real and less or equal
than zero. Therefore their square roots are all purely imaginary.

3.2 A Geometric Approach: enforcing the geometric compatibility conditions into the
basis functions

In this section we will follow a second approach in which the basis functions for the finite
dimensional approximations of the solutions of our system are constructed in such a way as
to satisfy the geometric compatibility conditions. Given a lenfgtiand an integetvV. > 1

we construct the (uniform) grig (L, N) = {sj = UVri=12..., N}. Let 9 be the

(N-1)
standard, continuous linear spline on the gfidsuch thatl;?(sk) = Jd;1, and consider the
set of spline functions{'"") = {19 | j=2,.... N} . The linear span of{ is an(N — 1)
dimensional subspace &f!. In a similar way we construct a set of cubic splines to approximate
HZ, including the requirement that(0) = w’(0) = 0. Suppressing details we consider the set
Sy = 19 | j =1,...,N}. The linear span o is anN' dimensional subspace &f?.
The axial and transverse deflectiafisbeam are approximated by

N¥ NP
dits) =Y O sy, Wit s) = s (s,)  respectively.
j=2 j=2

It's clear that the span of the set
Sg - Szgg(Ll,Nfﬂ) ® Sgg(Lz,Nﬁv) ® Sf(Lth) ® Slg(Lz,N;) ® {e =1 .. 4}
isaN} + Ny’ + N + N3 + 2 dimensional subspace of thaconstrained configuratiospace

H, = HZ(0,Ly) x HZ(0, Ly) x Hy(0,Ly) x Hy(0, Ly) x R*,
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but is not a subspace of the configuration space that includes the geometric constraints (16)-
(17). It can be noted that all but twelve of the basis elementFisatisfy (16)-(17) trivially,

but that the constraint is not satisfied by the last linear splirf&ittwo beams), nor by the last

three cubic splines iy (again, two beams), nor by the basis fat. Before proceeding we
simplify the presentation by choosing’ = N3’ = Ni* = N = N. Also, in order to keep the
notation short we shall use the notatighl and!\” for b7 andi""", respectively. We
denote the twelvaonconformingoasis elements by

0 0 0
0 0 0
&=10 k=1,...4, §s = lﬁé) §6 = g) ;
0 0 v
(ST 0 0
and
1)
be(ka) @ 0
0 ON"(12-%)
Sk = 0 k=717,8,9, & = 0 k=10,11,12.
0 0
0 0

To impose the geometric constraints (16)-(17) we define the (geometric-constraint) operator
C:H,— R®by

SYRS

1
1
2 2
. —Ww
; (D gry | Y| — ey, (51)

w
w
u
u

SN

2
n 2

wheren = col(z,y, 0:,0,) is the joint state variable previously defined, the mafrixis as
defined in (40)-(41), and’? is the boundary projection operator defined in Burns et alle
seek linear combinations of the basis vectgrs: = 1, ..., 12, that are in the null-space of the
operatorC defined in (51); these then will satisfy the constraints (16)-([’12,12:1 a &) =
2 g C(&) = 0 € RS, That s, the coefficient vectar = (o, ..., a12)" € R must lie
in the null space of the6(x 12) matrix whose columns aré(&; ), C(&;),. .. £(&2). It can be
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shown that the six linear combinations{(sz},162:1 that satisfy the constraint (16)-(17) are:

([ —2&10 + &1 — 2612
=287 + & — 28
() §a+ %[(—% + £2)€10 + (55 + £2)&1o]
&+ 5l(—g + )& + (1 + £1)&] .
§o — cos p1&5 + cos s + T (§r + &) + FH2 (€10 + E12)
([ &1 —sinpi&s — sinpas — 57 (§7 + o) + 52 (&0 + &12)

. !/
whereb; = <b§f,)_2) (L;), i = 1,2. Now, we choose a bas& = {by,...,byy_4} for our
finite-dimensional constrained configuration spateé = spaSY) c H,:

0 bgl)
0
b; = lﬁ)l , 1=1,---,N—=2 by.oy,= 0o |, i=1---,N—3,
0 0
0

and the remaining basis elements are chosen so as to gabisfy

For the sake of simplicity, in what follows, no internal joint moment effects will be con-
sidered, i.e., we assunte= k = 0 and thereforeM(¢) = 0 (see equation (13)). Us-
ing the weak formulations of equations (1)-(3)-(9)-(10)-(11)-(12) with test functibns-
(@1, @2, 03 &1 /)T € HN c (L2(0, L) x L2(0, L))" x R, integrating by parts and us-
ing boundary conditions (2) and (4), leads to the weak-form

p1 A [(wttv (I)1> + <u}ta (I)?))} + p2 Ay [<wtt7 (I)2> + <u?t7 (I)4>] <M?7777 ‘I)J>1R4
<E1]1wss + 71w55t7 (I) > <E2[2wss + /‘)/Qwsst? q)? >
+ (BvAvug + g, ) + (ByAgu? + pou’y, @) 4+ (CP, F)pe =0, (52)

st

whereC is the operator defined in (51J, is as given in (40), and/, is the matrix defined in
(38). Here,( , )gs refers to the inner-product iR°, while ( , ) refers to thel, inner-product.
Following the usual Galerkin procedure, we use the bgsjs. .., byy_4} both to approxi-

mate the solution ,

w'(t)

w(t) AN—4

ul(t) | = > z(t)b;
u?(t) j=1

n(t)

and also as test functiods We use the notatioh; = (b}, b?, bj, b, bj) ,i=1,2,... ,4N—
4. Note that in this setting the last term in (52) vanishes since by construction the basis vectors

satisfyCb; = 0 € R°.
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This leads to the finite-dimensional model

MNEN(E) + DVEN () + KN () = 0 e R (53)
where the(4N — 4) x (4N — 4) matrices are given by:

MY, = (p1A1) [(b}.b]) + (b2, b7)]

+ (pada) [(b], b7) + (b}, b)] + (M;b}, b ) (54)
KY; = (E) [<(b1)” (b1>”>} (E212) [((b5)", (b7)")]

+ (ErAy) [(B5), (07))] + (E24z) [{(b5)', (b7))] (55)
Dy = b})’, )’>}+w [((bz)” (b7)")]

+ e [(B5), (7)) + o [((B3), (b)) (56)

4 NUMERICAL RESULTS

We present first some numerical results obtained with the geometric approach described in
section 3.2. Initially, we compare our numerical approximatiomxactresults from [6, see
pages 431, 432]. For this purpose we specify some geometric and material properties of the
beams in Table 1.

Table 1: Beam parameters

Table 2: Low-inertia joint parameters

Parameter Value
Length 1.22555m Parameter Value
Diameter 0.1054 m leg mass| 0.2797 mg
Thickness 0.0015m leg length| 1.22555 mm
Material Density| 1149kg/m? pin mass| 0.1399 mg
Young’s Modulus| 0.9 10" N/m?

With these properties the mass of the beam is 0.6993 kg. For the current comparison we
specify joint parameters in Table 2. With these values the joint mass fsthat of the beam,
with 40 % of the joint mass in each leg, and 20 % in the pin. The length of a joint leg is 0.1
% of the beam’s length, and the center of mass of the joint leg is at its mid-point. Thus, the
joint-inertia terms are quite small.

We took Nj* = Nj = N*andN{* = N3’ = N". As noted above, thexactvalues in Table 3
are from D. Hartod. Specifically, listed as modesand3 are first two transverse modes of a
clamped-fredoeam; listed modezand4 are the first two transverse modes alamped-pinned
beam; and, listed modgis the first axial mode of elamped-fredoeam. In our computed mode-
shapes, modeks— 4 exhibit virtually no axial motion, while mod®& has no transverse motion.
Additionally, modesl and3, show non-zero transverse end-displacement and equal end-slopes,
while modes2 and4, show zero transverse end-displacement and opposite end-slopes. Lastly,
the transverse modal frequencies ffoane given to only 2 or 3 digits. We conclude that the
results from our MTLAB code are reasonable.
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Table 3: Comparison withxactresults

N“ | N¥ w1 %) W3 Wy Wh
2 8 || 771.9| 3378.5| 4838.4| 10957.3| 11636.9
4 8 || 771.9| 3378.5| 4838.4| 10957.3| 11416.6
8 8 || 771.9| 3378.5| 4838.4| 10957.3| 11361.8
16 | 8 || 771.9| 3378.5| 4838.4| 10957.3| 11348.1
32| 8 || 771.9| 3378.5| 4838.4| 10957.3| 11344.7
32| 32 || 771.9| 3378.3| 4837.6| 10947.8| 11344.7
64 | 64 | 771.9| 3378.5| 4838.4| 10957.3| 11343.9
exact 773 | 3380 | 4830 | 10980 | 11343.6

4.1 Equilateral configuration

The numerical approximation procedures are now applied to a two-beam system;with
9 = 60° (an equilateral configuration). Beam parameters are as given in Table 1 while nominal
joint parameters are given in Table 4. The mass of the joint is 20 % that of the beam, and is

Table 4: Nominal joint parameters

Parameter Value
legmass| 55.94¢
leg length| .122555 m
pinmass| 27.97g

distributed as described above. The length of a joint leg is 10 % of the beam’s length, and the
center of mass of the joint leg is at its mid-point.

4.2 Undamped Frequencies

As an initial exercise, we study mesh-convergence of modal frequencies for the undamped
system. Once again we todk' = N} = N* and N}’ = Ny = N*. Note that our software
implementation requires th&{” > 6. From Table 5, we conclude that* = 16, N* = 16
provides reasonable accuracy. Modal shapes for the first four frequencies fusikgV"* =

32) are shown in Figures 3-6. It can be seen that the first mode involves rotatiens, = —1)
andverticaltranslation { = —0.0477) of the joint, but very littler motion. The beams move up

and down in concert, when beam-1 is in compression, beam-2 is in tension. The second mode
displays smalhorizontaltranslation. The bending motions are perfectly out-of-phase; both
moving outward or both moving inward, while the axial motions are perfectly in-phase. In the
third mode the beam motions are similar to the first, but the joint translagjas (nuch greater.

The fourth mode is similar to the second; bending motions are in-phase, while axial motions
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Table 5: Mesh convergence
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are out-of-phase. Here, again, joint translatiopi¢ larger than in the second mode. Note that
the frequency labels in these figures are based on dimensionless time. The natural time unit,
suggested by the axial equation, is giventby= L+/p/E and evaluates to .138474496 ms.

Next, we study the effects of the joint-mass parameter on the first few modal frequencies. In
each case, each joint-leg is 40 % of the joint-mass, while the pin is 20 %. In these calculations
we usedN* = N¥ = 32. Recall that the latter two modes exhibit more joint translational

Table 6: Joint mass effect

Joint Mass| w; Wy ws Wy
1076 2739| 2809 | 8116 | 9065
.001 2739| 2809 | 8113 | 9064
.010 2738| 2809 | 8077 | 9056
.050 2735| 2807 | 7913 | 9017
.100 2730| 2805| 7699 | 8963
.200 2721| 2801 | 7267 | 8829
.500 2692 | 2789 | 6169 | 8208

motion than the first two; thus, it seems reasonable that these modal frequencies depend more
strongly on the joint mass.

4.3 Damping Ratio

The damping characteristics, parameterized by the congtants, v, and~; in our model, are
arguably the most troublesome to estimate. Initially, we ake- po = p = 10kg m/s, v, =
v = v = 0.1kg/s. We compute eigenvalues of the system (approximatei'by- N = 32).

Figure 7 shows the distribution of the eigenvalues. Figures 8 and 9 have been truncated
to highlight lower frequencies. Note that most of these eigenvalues are nearly repeated roots.
It appears that in one of the modes the bending motions of the beams are identical and nearly
in-phase, while the axial motions are identical and nearly d8@-of-phase. The other mode at
nearly the same frequency and damping has identical, nearly in-phase axial motions and iden-
tical, nearly 180 out-of-phase bending motions. Table 7 shows the modal damping parameter
in the first four modes for several values of the damping parametansly. It appears that the
axial damping parameter) has little effect on the first four modes, while the damping ratios
vary approximately linearly with the transverse damping paramejer (

4.4 Response to initial data

Our final numerical study is solution of an initial value problem for the two-beam system. For
given values of the joint displacements( x, vy, 6:, §3) we compute the compatible values of
the beam end-conditions€. u'(L,), u*(Ls), w' (L), wl(Ly), w*(Ly), w?(L,)). Assuming a

linear distribution of axial beam displacement, and a cubic distribution of bending displacement
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Figure 7: Eigenvalue Distribution
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Table 7: Damping parameter survey

ro G Ca G @

1 |.1| 0.0020| 0.0022| 0.0023| 0.0053

10| .1 | 0.0021| 0.0022| 0.0028| 0.0055

50 (.1 0.0021| 0.0023| 0.0048| 0.0065

10| .2 | 0.0041| 0.0045| 0.0050| 0.0107 2266
10| .5 0.0102| 0.0112| 0.0117| 0.0266

10| 1 | 0.0204| 0.0224| 0.0228| 0.0538
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(along with the boundary conditiong (0) = w'(0) = w!(0) = v*(0) = w?(0) = w?(0) = 0)
we can solve uniquely for the axial and bending distributions. With these in hand, the strain
energy can be evaluated.

For the initial displacement of the two-beam system, we specify 0, y = 1 mm and
compute valueg, and#, so as to minimize the initial strain energy, using the linear/cubic
beam shapes as noted above. Figure 10 displays the initial deflections of the beams. Note
that with y positive the upper beam is in compression, while the lower beam is in tension.
Both beams exhibit positive bending displacements. Figure 12 displays the time history of
the joint translation; the simulation maintains= 0, as expected. Figure 11 displays the final
deflections of the beams (at= 0.01 s). The anti-symmetry of the axial displacements has been
preserved, while the bending displacements remain in-phase. Note that the axial displacement
indicates non-uniform strain.¢. u, is not constant). Figure 13 shows the time history of the
total mechanical energy. Approximately one-half of the energy is dissipated in the first 0.01
sec. Figure 14 shows the energy partition among axial (beam 1-kinetic plus potential), bending
(beam 1-kinetic plus potential) and joint motions. The energy values are normalized by the total
instantaneous energy, so the total should be unity. Perhaps the most surprising feature is that, at
times, the joint carries up to 40% of the total energy.

Finally we present some numerical results obtained with the projection method described in
Section 3.1.1. Figures 15, 16, 17 show the distribution of the eigenvalues obtained with this
method. We observed that they are almost identical to those obtained with the previous method.
Similarly, Figure 18 shows the time evolution of the joint’s tip obtained with this method for
the same initial conditions described in Section 4.4.
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5 CONCLUSIONS

In this article, a model for the dynamics of tow beams with Kelvin-Voigt damping, coupled to a
joint through two legs was presented. The total energy of the system was computed and its dis-
sipativeness was shown. Two different approaches were followed to develop finite dimensional
approximations for the solutions of the system. One approach used a projection method to en-
force the dynamic boundary conditions while the other consisted of enforcing these boundary
conditions into the basis functions. Numerical results were presented for both methods. Fre-
guency and damping characteristics were analyzed and the response of the system to initial data
was studied.
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