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Kelvin-Voight damping, coupled to a simple joint through two legs. The beams are clamped
at one end but at the other end they satisfy a boundary condition given in terms of an ODE
coupling boundary terms of both beams, which reflects geometric compatibility conditions. The
system is then written as a second order differential equation in an appropriate Hilbert space
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tions can be obtained. Two different finite dimensional approximation schemes for the solutions
of the system are presented. Numerical results are presented and comparisons are made.
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1 INTRODUCTION: THE MODEL

We consider the joint-legs-beams system is depicted in Figure 1. This system arises in the study
of the dynamics of cross-sections of the truss-structure depicted in Figure 2. In our model, both
beams are clamped at the endssi = 0, i = 1, 2 and can vibrate in the plane. The transverse
(bending) deformation of beami is denoted bywi(t, si) while the longitudinal (axial) deforma-
tion is denoted byui(t, si), where0 ≤ si ≤ Li, i = 1, 2. Kelvin-Voight damping is considered
for both longitudinal and transverse beam motions. The joint configuration is described by the
planar Cartesian displacements of the pivot, denoted byx(t) andy(t) and byθ1(t), θ2(t), where
θi(t) denotes the angle between legi and positivex axis. The physical parameters and variables
used in the model are as follows:

• Li, Ai, Ii, Ei, ρi: length, cross section area, moment of inertia, Young’s modulus and
mass density of beami, i = 1, 2.

• x(t), y(t): horizontal and vertical displacements of the joint,t ≥ 0.
• θi(t): angle of legi with the horizontal,i = 1, 2, t ≥ 0.
• `i, mi, I i

`, di: length, mass, moment of inertia about center of mass and distance from
pivot to center of mass of legi, i = 1, 2.

• I i
Q = I i

` + mid
2
i : moment of inertia of legi about pivot,i = 1, 2.

• µi, γi, b, k: Kelvin-Voight damping parameters in the axial motions, in the transverse
bending, internal viscous joint damping and stiffness parameters.

• mp: mass of the pivot.
• m = m1 + m2 + mp : total mass of the joint system.
• ϕ1, ϕ2: angles at equilibrium of beam 1 with respect to the positivey axis and of beam 2

with respect to the negativey axis, respectively.
• Fi(t), Ni(t), Mi(t): extensional force, shear force and bending moment at the endsi = Li

of beami.
• MQ(t): internal torque exerted on joint-leg 1 by joint-leg 2.

1.1 Constitutive equations

For the transverse (bending) motions of the beams, an Euler-Bernoulli model with Kelvin-
Voight damping is considered, i.e.

ρiAi
∂2wi(t, si)

∂t2
+

∂2

∂s2
i

[
EiIi

∂2wi(t, si)

∂s2
i

+ γi
∂3wi(t, si)

∂s2
i ∂t

]
= 0, (1)

wi(t, 0) =
∂wi(t, 0)

∂si

= 0. (2)

The longitudinal (axial) motions of the beams, also with Kelvin-Voight damping, are de-
scribed by:

ρiAi
∂2ui(t, si)

∂t2
− ∂

∂si

[
EiAi

∂ui(t, si)

∂si

+ µi
∂2ui(t, si)

∂si∂t

]
= 0, (3)

ui(t, 0) = 0. (4)
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Figure 1: Basic structure of the joint-legs-beams system
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Figure 2: Truss-structure

For the joint-legs, from Newtonian mechanics, we obtain:

m ẍ(t)−m1d1 sin θ1(t)θ̈1(t)−m2d2 sin θ2(t)θ̈2(t)

= m1d1 cos θ1(t)θ̇1(t)
2 + m2d2 cos θ2(t)θ̇2(t)

2 + F1(t) cos θ1(t)

−N1(t) sin θ1(t) + F2(t) cos θ2(t)−N2(t) sin θ2(t), (5)

m ÿ(t) + m1d1 cos θ1(t)θ̈1(t) + m2d2 cos θ2(t)θ̈2(t)

= m1d1 sin θ1(t)θ̇1(t)
2 + m2d2 sin θ2(t)θ̇2(t)

2 + F1(t) sin θ1(t)

+N1(t) cos θ1(t) + F2(t) sin θ2(t) + N2(t) cos θ2(t), (6)

I1
Q θ̈1(t) = MQ(t) + M1(t) + `1 N1(t)

+ m1d1 [ẍ(t) sin θ1(t)− ÿ(t) cos θ1(t)] , (7)

I2
Q θ̈2(t) = −MQ(t) + M2(t) + `2 N2(t)

+ m2d2 [ẍ(t) sin θ2(t)− ÿ(t) cos θ2(t)] . (8)

Since the continuum equations (1)-(4) reflect small deflection theory, we shall consider equa-
tions (5)-(8), linearized aboutx0 = y0 = ẋ0 = ẏ0 = θ̇0

1 = θ̇0
1 = 0 and θ0

1 = π
2
− ϕ1,

θ0
2 = −π

2
+ ϕ2. These equations are:

m ẍ(t)−m1d1 cos ϕ1θ̈1(t) + m2d2 cos ϕ2θ̈2(t)

= F1(t) sin ϕ1 −N1(t) cos ϕ1 + F2(t) sin ϕ2 + N2(t) cos ϕ2, (9)

m ÿ(t) + m1d1 sin ϕ1θ̈1(t) + m2d2 sin ϕ2θ̈2(t)

= F1(t) cos ϕ1 + N1(t) sin ϕ1 − F2(t) cos ϕ2 + N2(t) sin ϕ2, (10)

J. A. Burns, E. M. Cliff, Z. Liuand R. D. Spies

2249



I1
Qθ̈1(t) = MQ(t) + M1(t) + `1 N1(t) + m1d1 [ẍ(t) cos ϕ1 − ÿ(t) sin ϕ1] , (11)

I2
Qθ̈2(t) = −MQ(t)+M2(t)+ `2 N2(t)−m2d2 [ẍ(t) cos ϕ2 + ÿ(t) sin ϕ2] . (12)

It must be noted that in equations (9)-(12),θi(t) denotes the perturbation in the angle between
legi and the positivex axis. Although more generality is possible, in the present formulation we
shall consider only linear elastic and viscous effects in the internal moment, assuming therefore
MQ(t) in the form:

MQ(t) = k (θ2(t)− θ1(t)) + b
(
θ̇2(t)− θ̇1(t)

)
. (13)

1.2 Compatibility conditions

First, geometric compatibility conditions require that the Cartesian position of the beams tip
and the joint-legs remain the same, and also that the end-slope of the beam be the same as the
slope of the leg. These conditions translate into the following equations.

x(t)− `1θ1(t) cos ϕ1 + w1(t, L1) cos ϕ1 + u1(t, L1) sin ϕ1 = 0

y(t) + `1θ1(t) sin ϕ1 − w1(t, L1) sin ϕ1 + u1(t, L1) cos ϕ1 = 0

θ1(t) + w1
s(t, L1) = 0

(14)


x(t) + `2θ2(t) cos ϕ2 − w2(t, L2) cos ϕ2 + u2(t, L2) sin ϕ2 = 0

y(t) + `2θ2(t) sin ϕ2 − w2(t, L2) sin ϕ2 − u2(t, L2) cos ϕ2 = 0

θ2(t) + w2
s(t, L2) = 0

(15)

These equations can also be written in the form:
u1(t, L1) = −x(t) sin ϕ1 − y(t) cos ϕ1

w1(t, L1) = −x(t) cos ϕ1 + y(t) sin ϕ1 + `1θ1(t)

w1
s(t, L1) = −θ1(t)

(16)


u2(t, L2) = −x(t) sin ϕ2 + y(t) cos ϕ2

w2(t, L2) = x(t) cos ϕ2 + y(t) sin ϕ2 + `2θ2(t)

w2
s(t, L2) = −θ2(t)

(17)

Also, the Kelvin-Voight constitutive model requires the following compatibility conditions.
For the bending moments at the interfaces:{

E1I1w
1
ss(t, L1) + γ1ẇ

1
ss(t, L1) = M1(t)

E2I2w
2
ss(t, L2) + γ2ẇ

2
ss(t, L2) = M2(t)

(18)
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For the shear forces at the interfaces:{
∂
∂s

(E1I1w
1
ss + γ1ẇ

1
ss) (t, L1) = N1(t)

∂
∂s

(E2I2w
2
ss + γ2ẇ

2
ss) (t, L2) = N2(t)

(19)

For the axial forces at the interfaces:{
∂
∂s

(E1A1u
1 + µ1u̇

1) (t, L1) = F1(t)
∂
∂s

(E2A2u
2 + µ2u̇

2) (t, L2) = F2(t)
(20)

The apparently cumbersome notation for spatial derivatives in equations (19) and (20) is nec-
essary because although the sums in each parentheses are smooth, each one of the summands
need not be (see for instance3 and4 ).

2 ENERGY EQUATIONS AND THE DISSIPATIVENESS OF THE SYSTEM

Multiplying equations (1) byẇ(t, s), integrating by parts and using boundary conditions (2)
and compatibility conditions (18) and (19), we obtain for each beam an equation of the form

0 =
d

dt

{
1

2

∫ L

0

[
ρA(ẇ)2 + EI(wss)

2
]

ds

}
+ ẇ(t, L)N(t)− ẇs(t, L)M(t) + γ

∫ L

0

ẇ2
ss ds

=
d

dt
E(beam− w) + ẇ(t, L)N(t)− ẇs(t, L)M(t) + γ

∫ L

0

(ẇss)
2 ds, (21)

whereE(beam− w) is the energy of the beam due to transverse motions, defined as

E(beam− w)
.
=

1

2

∫ L

0

[
ρA(ẇ)2 + EI(wss)

2
]

ds. (22)

Now, using equations (16) and (17) to replaceẇ(t, L) andẇs(t, L) in (21) and adding to-
gether the equations for both beams we obtain

0 =
d

dt

[
E(beam− w1) + E(beam− w2)

]
+ γ1

∫ L1

0

(
ẇ1

ss

)2
ds + γ2

∫ L2

0

(
ẇ2

ss

)2
ds

+ θ̇1(t)M1(t) + θ̇2(t)M2(t) + N1(t)
[
`1θ̇1(t)− ẋ(t) cos ϕ1 + ẏ(t) sin ϕ1

]
+ N2(t)

[
`2θ̇2(t) + ẋ(t) cos ϕ2 + ẏ(t) sin ϕ2

]
. (23)

Similarly, multiplying equations (3) bẏu, integrating by parts and using boundary conditions
(4) and compatibility conditions (20) we obtain for each beam an equation of the form

0 =
d

dt

{
1

2

∫ L

0

[
ρA(u̇)2 + EA(us)

2
]

ds

}
− u̇(t, L)

∂

∂s
[EAu(t, L)− µu̇(t, L)]

+ µ

∫ L

0

(u̇s)
2 ds =

d

dt
E(beam− u)− u̇(t, L)F (t) + µ

∫ L

0

(u̇s)
2 ds,

(24)
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whereE(beam− u) is the energy of the beam due to longitudinal motions, defined as

E(beam− u)
.
=

1

2

∫ L

0

[
ρA(u̇)2 + EA(us)

2
]

ds. (25)

Now, adding together the equations for both beams and using equations (16) and (17) to replace
u̇1(t, L1) andu̇2(t, L2) we obtain

0 =
d

dt

[
E(beam− u1) + E(beam− u2)

]
+ µ1

∫ L1

0

(
u̇1

s

)2
ds + µ2

∫ L2

0

(
u̇2

s

)2
ds

+ F1(t) [ẋ(t) sin ϕ1 + ẏ(t) cos ϕ1] + F2(t) [ẋ(t) sin ϕ2 − ẏ(t) cos ϕ2] . (26)

Now we multiply equations (9), (10), (11), (12) byẋ(t), ẏ(t), θ̇1(t) andθ̇2(t), respectively, and
add them together to obtain

0 =
d

dt

1

2

[
m

(
(ẋ(t))2 + (ẏ(t))2 + I1

Q(θ̇1(t))
2 + I2

Q(θ̇2(t))
2

+ ẋ(t)
(
−m1d1 cos ϕ1θ̈1(t) + m2d2 cos ϕ2θ̈2(t)− F1(t) sin ϕ1

+N1(t) cos ϕ1 − F2(t) sin ϕ2 −N2(t) cos ϕ2

)
+ ẏ(t)

(
m1d1 sin ϕ1θ̈1(t) + m2d2 sin ϕ2θ̈2(t)− F1(t) cos ϕ1

−N1(t) sin ϕ1 + F2(t) cos ϕ2 −N2(t) sin ϕ2

)
+ θ̇1(t) (−MQ(t)−M1(t)− `1N1(t)−m1d1ẍ(t) cos ϕ1 + m1d1ÿ(t) sin ϕ1)

+ θ̇2(t) (MQ(t)−M2(t)− `2N2(t) + m2d2ẍ(t) cos ϕ2 + m2d2ÿ(t) sin ϕ2) .

(27)

Adding together equations (23), (26) and (27) we obtain

d

dt

{
E(beam− w1) + E(beam− w2) + E(beam− u1) + E(beam− u2)

+ m
(
(ẋ(t))2 + (ẏ(t))2

)
+ I1

Q(θ̇1(t))
2 + I2

Q(θ̇2(t))
2
]

+ m1d1

(
−ẋ(t)θ̇1(t) cos ϕ1 + ẏ(t)θ̇1(t) sin ϕ1

)
+ m2d2

(
ẋ(t)θ̇2(t) cos ϕ2 + ẏ(t)θ̇2(t) sin ϕ2

) }
= −γ1

∫ L1

0

(
ẇ1

ss

)2
ds− γ2

∫ L2

0

(
ẇ2

ss

)2
ds

− µ1

∫ L1

0

(
u̇1

s

)2
ds− µ2

∫ L2

0

(
u̇2

s

)2
ds−MQ(t)[θ̇2(t)− θ̇1(t)]. (28)
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Recalling now thatMQ(t) = k[θ2(t) − θ1(t)] + b[θ̇2(t) − θ̇1(t)] (see equation (13) ),I i
Q =

I i
` + mid

2
i , i = 1, 2, and thatm = m1 + m2 + mp, equation (28) above can be written as

d

dt

{
E(beam− w1) + E(beam− w2) + E(beam− u1) + E(beam− u2) + E(joint-legs)

}
= −γ1

∫ L1

0

(
ẇ1

ss

)2
ds− γ2

∫ L2

0

(
ẇ2

ss

)2
ds

− µ1

∫ L1

0

(
u̇1

s

)2
ds− µ2

∫ L2

0

(
u̇2

s

)2
ds− b[θ̇2(t)− θ̇1(t)]

2, (29)

where

2 E(joint-legs)
.
= m

(
(ẋ(t))2 + (ẏ(t))2

)
+ I1

Q(θ̇1(t))
2 + I2

Q(θ̇2(t))
2

+ m1d1

(
−ẋ(t)θ̇1(t) cos ϕ1 + ẏ(t)θ̇1(t) sin ϕ1

)
+ m2d2

(
ẋ(t)θ̇2(t) cos ϕ2 + ẏ(t)θ̇2(t) sin ϕ2

)
+ k (θ2(t)− θ1(t))

2

= m1

(
ẋ(t)− d1θ̇1(t) cos ϕ1

)2

+ m2

(
ẏ(t) + d1θ̇1(t) sin ϕ1

)2

+ m1

(
ẋ(t) + d2θ̇2(t) cos ϕ2

)2

+ m2

(
ẏ(t) + d2θ̇2(t) sin ϕ2

)2

+ mp

(
ẋ(t)2 + ẏ(t)2

)
+ I1

` θ̇1(t)
2 + I2

` θ̇2(t)
2 + k (θ2(t)− θ1(t))

2 . (30)

Note that by (29), ifγ1 = γ2 = µ1 = µ2 = b = 0 then the system is conservative and it is
dissipative otherwise.

In Burns et all,5 system (1)-(17) was written as a second order differential equation of the

form Ẍ(t) + A
(
SẊ(t) + X(t)

)
= 0, in an appropriate Hilbert spaceH. This space is a

product of spaces describing the distributed beam deflections and a finite dimensional space that
projects important features at the joint boundary. In this context, the total energy of the system,
i.e. the expression within brackets in the left hand side of (29), takes the formE(X, Ẋ) =
1
2

(
||Ẋ(t)||2H + ||A 1

2 X(t)||2H
)

. Also, using this abstract framework, the well-posedness of the

system was proved and it was shown that solutions decay exponentially in the case in which the
damping parametersγ1, γ2, µ1, µ2 are all strictly positive. A characterization of the spectrum
was also given.

3 FINITE DIMENSIONAL APPROXIMATIONS

In this section we will develop finite dimensional approximations for the solutions of system
(1)-(17).

3.1 A Projection Method

Transverse motions of the beams.We use a Galerkin procedure with cubic splines to approx-
imatewi(t, si) by

∑nω

j=1 zi
j(t)b

i
j(si), i = 1, 2, 0 ≤ si ≤ Li. Here theb1

j ’s and theb2
j ’s are cubic

J. A. Burns, E. M. Cliff, Z. Liuand R. D. Spies

2253



splines in[0, L1] and [0, L2] respectively, modified as to satisfy the boundary conditions (2),
wi(t, 0) = wi

si
(t, 0) = 0, i.e. thebi

j ’s satisfybi
j(0) = bi

j
′
(0) = 0, j = 1, 2, . . . nw, i = 1, 2. The

weak formulation of equation (1) for each one of the beams, after integration by parts leads to:

ρA

∫ L

0

wtt(t, s)φ(s) ds + EI

∫ L

0

wss(t, s)φss(s) ds + γ

∫ L

0

wsst(t, s)φss(s) ds

= EIwss(t, L)φs(L)− EIwsss(t, L)φ(L) + γwsst(t, L)φs(L)− γwssst(t, L)φ(L)

= φs(L) [EIwss(t, L) + γwsst(t, L)]− φ(L) [EIwsss(t, L) + γwssst(t, L)]

= φs(L)M(t)− φ(L)N(t) (by virtue of equations (18) and (19) ),

where theφ’s are test functions. Using the same cubic splines as test functions, the above
equation can be written in matrix form as

ρAM bz̈(t) + EIHbz(t) + γHbż(t) = b′(L)M(t)− b(L)N(t),

wherez(t) = (z1(t), z2(t), . . . , znω(t))T , b(s) = (b1(s), b2(s), . . . , bnω(s))T , andM b, Hb are

the matrices given byM b =
(∫ L

0
bj(s)bk(s) ds

)
, Hb =

(∫ L

0
b′′j (s)b

′′
k(s) ds

)
.

We have one equation like this for each beam. We write these equations in the form:

ρ1A1M
b
1 z̈

1(t) + E1I1H
b
1z

1(t) + γ1H
b
1ż

1(t) = b1′(L1)M1(t)− b1(L1)N1(t),

ρ2A2M
b
2 z̈

2(t) + E2I2H
b
2z

2(t) + γ2H
b
2ż

2(t) = b2′(L2)M2(t)− b2(L2)N2(t).

By denoting withz(t) the finite dimensional state variable for the transverse motions of both

beams,z(t)
.
=

(
z1(t)
z2(t)

)
, the above two equations can be written as

Mwz̈(t) = Awz(t) + Bwż(t) + Cw


M1(t)
N1(t)
M2(t)
N2(t)

 , (31)

where

Mw
.
=

(
ρ1A1M

b
1 0

0 ρ2A2M
b
2

)
, Aw

.
=

(
−E1I1H

b
1 0

0 −E2I2H
b
2

)
, (32)

Bw
.
=

(
−γ1H

b
1 0

0 −γ2H
b
2

)
, Cw

.
=

(
b1′(L1) −b1(L1) 0 0

0 0 b2′(L2) −b2(L2)

)
. (33)
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Longitudinal motions of the beams. We now proceed to do the same for the longitudinal
displacements of the beams. After integration by parts, and using the boundary conditions (4)
ats = 0, the weak formulation of equation (3)for each one of the beams takes the form:

0 = ρA

∫ L

0

utt(t, s)φ(s) ds + EA

∫ L

0

us(t, s)φs(s) ds + µ

∫ L

0

ust(t, s)φs(s) ds

= EAus(t, L)φ(L) + µust(t, L)φ(L)

= F (t)φ(L) (by virtue of the compatibility conditions (20) ),

where theφ’s are test functions. We approximate the longitudinal displacementsui(t, si) of each
beam by by

∑nu

j=1 ri
j(t)l

i
j(si), i = 1, 2, 0 ≤ si ≤ Li. Here thel1j ’s and thel2j ’s are linear splines

in [0, L1] and [0, L2], respectively, modified as to satisfy the boundary conditions (4), i.e. the
lij ’s satisfylij(0) = 0, j = 1, 2, . . . , nu, i = 1, 2. Using the same linear splines as test functions,
the equation above can be written in the formρAM `r̈(t) + EAK`r(t) + µK`ṙ(t) = l(L)F (t),
wherer(t)

.
= (r1(t), r2(t), . . . , rnu(t))T , l(s)

.
= (l1(s), l2(s), . . . , lnu(s))T , andM `, K` are the

mass and stiffness matrices given byM ` .
=

(∫ L

0
`j(s)`k(s) ds

)
, K` .

=
(∫ L

0
l′j(s)l

′
k(s) ds

)
.

We have an equation like this for each beam. We write them in the form

ρ1A1M
`
1 r̈

1(t) + E1A1K
`
1r

1(t) + µ1K
`
1ṙ1(t) = l1(L1)F1(t),

ρ2A2M
`
2 r̈

2(t) + E2A2K
`
2r

2(t) + µ2K
`
2ṙ2(t) = l2(L2)F2(t).

By denoting withr(t) the finite dimensional state variable for the longitudinal motions of both

beams,r(t)
.
=

(
r1(t)
r2(t)

)
, the above two equations can be written as

Mur̈(t) = Aur(t) + Buṙ(t) + Cu

(
F1(t)
F2(t)

)
, (34)

where

Mu
.
=

(
ρ1A1M

`
1 0

0 ρ2A2M
`
2

)
, Au

.
=

(
−E1A1K

`
1 0

0 −E2A2K
`
2

)
, (35)

Bu
.
=

(
−µ1K

`
1 0

0 −µ2K
`
2

)
, Cu

.
=

(
l1(L1) 0

0 l2(L2)

)
. (36)

State equations for the joint-legs.We define the state variable for the joint-legs system to be

η(t)
.
=

(
x(t) y(t) θ1(t) θ2(t)

)T
. The linearized equations (9), (10), (11), (12), withMQ as

in (13), can then be written in matrix form as

Mηη̈(t) = Aηη(t) + Bη η̇(t) + CηF (t), (37)
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where

Mη
.
=

(
mI2 P
P T diag(I1

Q, I2
Q)

)
, with P

.
=

−m1d1 cos ϕ1 m2d2 cos ϕ2

m1d1 sin ϕ1 m2d2 sin ϕ2

 ,

(38)

and

Aη
.
=


0 0 0 0
0 0 0 0
0 0 −k k
0 0 k −k

 , Bη
.
=


0 0 0 0
0 0 0 0
0 0 −b b
0 0 b −b

 , (39)

F (t)
.
=


M1(t)
N1(t)
M2(t)
N2(t)
F1(t)
F2(t)

 , and Cη
.
= [Cη,1 Cη,2] , (40)

with

Cη,1
.
=


0 − cos ϕ1 0 cos ϕ2

0 sin ϕ1 0 sin ϕ2

1 l1 0 0
0 0 1 l2

 and Cη,2
.
=


sin ϕ1 sin ϕ2

cos ϕ1 − cos ϕ2

0 0
0 0

 . (41)

State equations for the completely discretized beams-joint-legs system.We define now our
discretized state variable for the complete beams-legs-joint system to beZ(t)

.
= (z(t), r(t), η(t))T ,

and letn
.
= 2(nω + nu) + 4. Equations (31), (34) and (37) can then be written in terms ofZ(t)

in the form
MZ̈(t) = AZ(t) + BŻ(t) + CF (t), (42)

whereM , A andB aren × n mass, stiffness and damping matrices, respectively, andC is an
n× 6 matrix defined by

M
.
=

( Mw 0 0
0 Mu 0
0 0 Mη

)
, A

.
=

( Aw 0 0
0 Au 0
0 0 Aη

)
, B

.
=

( Bw 0 0
0 Bu 0
0 0 Bη

)
, C

.
=

(
Cw 0
0 Cu

Cη,1 Cη,2

)
. (43)

Next, using the recently introduced finite dimensional Galerkin approximations forwi(t, si) and
ui(t, si) , i = 1, 2, it turns out that the geometric compatibility conditions (equations (16) and
(17) ), can be writen, in an appropriate order, in the form:

G


z1(t)
z2(t)
r1(t)
r2(t)
η(t)

 = G Z(t) = 0, (44)
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whereG is the matrixG
.
=

CT
w 0 CT

η,1

0 CT
u CT

η,2

. We then observe that this matrixG is exactly

the transposed of the matrixC defined in (43) and therefore, the compatibility equation (44)
above simply takes the form

CT Z(t) = 0. (45)

Finally, the completely discretized system of equations consists then of the non-homogeneous
system ofn second order ODE’s (42) plus the differential-algebraic compatibility conditions
given by equation (45), i.e{

MZ̈(t) = AZ(t) + BŻ(t) + CF (t)

CT Z(t) = 0.
(46)

Note thatCT is a non-square6× n matrix.

3.1.1 Enforcing the constraintCT Z(t) = 0 into the dynamic equations

The question that immediately arises is how to actually solve system (46). We proceed now to
develop two different methods to accomplish this goal. Multiplying the first equation in (46)
first by CT M−1 and then using the second equation in its second order differential form, we
obtain

CF (t) = −C
(
CT M−1C

)−1
CT M−1

(
AZ(t) + BŻ(t)

)
= −P̂

(
AZ(t) + BŻ(t)

)
, (47)

where

P̂ .
= C

(
CT M−1C

)−1
CT M−1. (48)

One can immediately verify that̂P is the orthogonal projection ofIRn onto the orthogonal
complement of the null space ofCT M−1 or, equivalently onto the preimage underM of the

range ofC, i.e. P̂ : IRn ⊥−→ N (CT M−1)⊥ = R(M−1C) = M−1R(C).
Note: The invertibility of the matrixCT M−1C above is an immediate consequence of the

fact thatM , being a mass matrix (more precisely diagonal of mass matrices), is symmetric and
positive definite (soM−1 has the same properties) and the matrixCT has full rank. This implies
thatN (CT M−1C) = N (C) = {0}.

Replacing with (47) and (48) into (46) we obtain

MZ̈(t) = (I − P̂)
(
AZ(t) + BŻ(t)

)
= P

(
AZ(t) + BŻ(t)

)
, (49)
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whereP .
= I − P̂ = I − C(CT M−1C)−1CT M−1 is the orthogonal projection onto the null

space ofCT M−1 or equivalently, onto the image underM of the null space ofCT , i.e.

P : IRn ⊥−→ N (CT M−1) = MN (CT ).

Written in first order form, equation (49) takes the form

d

dt

(
Z(t)

Ż(t)

)
=

(
0 I

M−1PA M−1PB

) (
Z(t)

Ż(t)

)
. (50)

Observation This approach can be easily generalized to the case in which the algebraic con-
straint in (46) is replaced bŷCZ(t) = 0 whereĈ is an arbitraryk × n matrix (k < n), and it
also carries over to the infinite dimensional case.

3.1.2 Another way of enforcing an algebraic constraint: state projection into the null
space of the constraint operator

Let us consider once again the system (46) with an arbitrary full-rank constraint operatorF :
IRn → IRk (k < n): {

M̈z(t) = Az(t) + Bż(t) + Cg(t)

Fz(t) = 0

Hereg : [0,∞) → IRk, C is ann×k matrix andA, B andM are as in (46). By applyingFM−1

to the first equation, assuming invertibility ofFM−1C and enforcing the second order differ-
ential form of the constraint equation, we find as before thatg(t) is uniquely determined from
z(t) andA, B, C andF . More precisely,g(t) = (FM−1C)−1FM−1 (Az(t) + Bż(t)), and
thereforeM−1Cg(t) = −P∗M−1 (Az(t) + Bż(t)) , whereP∗ .

= M−1C(FM−1C)−1F =
F T (FF T )−1F, is the orthogonal projection ofIRn onto the orthogonal complement of the ker-

nel onF , i.e. P∗ : IRn ⊥−→ [N (F )]⊥. Note thatP∗ is independent ofC for anyC for which
FM−1C is invertible. Hence, the dynamic equation becomes

z̈(t) = (I − P∗) M−1 (Az(t) + Bż(t)) = P M−1 (Az(t) + Bż(t)) ,

whereP .
= I − P∗ = I − F T (FF T )−1F is the orthogonal projection ofIRn ontoN (F ).

Now, for anyz ∈ H we write z = z1 ⊕ z2, with z1 ∈ N (F ) andz2 ∈ [N (F )]⊥. Using this
decomposition and enforcing now the constraintFz(t) = 0 we obtainz2(t) = 0, z(t) = z1(t) =
Pz(t), and

z̈(t) = P M−1
(
A z(t) + B ż(t)

)
=

[
I − F T (FF T )−1F

]
M−1 (A z(t) + B ż(t)) ,

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

2258



or, written in first order form

d

dt

z(t)

ż(t)

 = A
(

z(t)
ż(t)

)
,

where

A .
=

 0 I

PM−1A PM−1B

 .

By performing row operations, it can be immediately seen that

det[λI −A] = det
[
λ2I − λPM−1B − PM−1A

]
.

Note that in the case of no damping (B = 0), the eigenvalues ofA are the square roots of
the eigenvalues ofPM−1A. SinceA is negative definite,M−1 positive definite andP is a
projection,PM−1A is negative semidefinite and its eigenvalues are all real and less or equal
than zero. Therefore their square roots are all purely imaginary.

3.2 A Geometric Approach: enforcing the geometric compatibility conditions into the
basis functions

In this section we will follow a second approach in which the basis functions for the finite
dimensional approximations of the solutions of our system are constructed in such a way as
to satisfy the geometric compatibility conditions. Given a lengthL and an integerN > 1

we construct the (uniform) gridG(L, N) =
{

sj = (j−1)
(N−1)

L | j = 1, 2, . . . , N
}

. Let lGj be the

standard, continuous linear spline on the gridG, such thatlGj (sk) = δj k, and consider the

set of spline functionsSG(L,N)
1 =

{
lGj | j = 2, . . . , N

}
. The linear span ofSG

1 is an(N − 1)
dimensional subspace ofH1

0 . In a similar way we construct a set of cubic splines to approximate
H2

0 , including the requirement thatw(0) = w′(0) = 0. Suppressing details we consider the set
S
G(L,N)
3 =

{
bGj | j = 1, . . . , N

}
. The linear span ofSG

3 is anN dimensional subspace ofH2
0 .

The axial and transverse deflectionsith beam are approximated by

ui(t, si) =

Nu
i∑

j=2

pi
j(t)l

G(Li,N
u
i )

j (si) , wi(t, si) =

Nw
i∑

j=2

qi
j(t)b

G(Li,N
w
i )

j (si) respectively.

It’s clear that the span of the set

SG .
= S

G(L1,Nw
1 )

3 ⊗ S
G(L2,Nw

2 )
3 ⊗ S

G(L1,Nu
1 )

1 ⊗ S
G(L2,Nu

2 )
1 ⊗ {eı, ı = 1, . . . , 4} ,

is aNw
1 + Nw

2 + Nu
1 + Nu

2 + 2 dimensional subspace of theunconstrained configurationspace

Hu
.
= H2

0 (0, L1)×H2
0 (0, L2)×H1

0 (0, L1)×H1
0 (0, L2)× lR4 ,
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but is not a subspace of the configuration space that includes the geometric constraints (16)-
(17). It can be noted that all but twelve of the basis elements inSG satisfy (16)-(17) trivially,
but that the constraint is not satisfied by the last linear spline inSG

1 (two beams), nor by the last
three cubic splines inSG

3 (again, two beams), nor by the basis forlR4. Before proceeding we
simplify the presentation by choosingNw

1 = Nw
2 = Nu

1 = Nu
2 = N . Also, in order to keep the

notation short we shall use the notationb
(i)
j andl

(i)
j for b

G(Li,N)
j andl

G(Li,N)
j , respectively. We

denote the twelvenonconformingbasis elements by

ξk =


0
0
0
0
ek

 k = 1, . . . 4 , ξ5 =


0
0

l
(1)
N

0
0

 ξ6 =


0
0
0

l
(2)
N

0

 ,

and

ξk =


b
(1)
N−(9−k)

0
0
0
0

 k = 7, 8, 9 , ξk =


0

b
(2)
N−(12−k)

0
0
0

 k = 10, 11, 12 .

To impose the geometric constraints (16)-(17) we define the (geometric-constraint) operator
C : Hu 7→ lR6 by

C


w1

w2

u1

u2

η

 .
=


−w1

s(L)
w1(L)
−w2

s(L)
w2(L)
−u1(L)
−u2(L)

− CT
η η = PB

1


w1

w2

u1

u2

− CT
η η, (51)

whereη = col(x, y, θ1, θ2) is the joint state variable previously defined, the matrixCη is as
defined in (40)-(41), andPB

1 is the boundary projection operator defined in Burns et all.5 We
seek linear combinations of the basis vectorsξk, k = 1, . . . , 12, that are in the null-space of the
operatorC defined in (51); these then will satisfy the constraints (16)-(17):C(

∑12
k=1 αk ξk) =∑12

k=1 αk C(ξk) = 0 ∈ lR6. That is, the coefficient vectorα
.
= (α1, . . . , α12)

T ∈ lR12 must lie
in the null space of the (6 × 12) matrix whose columns areC(ξ1), C(ξ2),. . . ,C(ξ12). It can be
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shown that the six linear combinations of{ξk}12
k=1 that satisfy the constraint (16)-(17) are:

(∗)



−2ξ10 + ξ11 − 2ξ12

−2ξ7 + ξ8 − 2ξ9

ξ4 + 1
2
[(− 1

b2
+ `2)ξ10 + ( 1

b2
+ `2)ξ12]

ξ3 + 1
2
[(− 1

b1
+ `1)ξ7 + ( 1

b1
+ `1)ξ9]

ξ2 − cos ϕ1ξ5 + cos ϕ2ξ6 + sin ϕ1

2
(ξ7 + ξ9) + sin ϕ2

2
(ξ10 + ξ12)

ξ1 − sin ϕ1ξ5 − sin ϕ2ξ6 − cos ϕ1

2
(ξ7 + ξ9) + cos ϕ2

2
(ξ10 + ξ12)

wherebi
.
=

(
b
(i)
N−2

)′
(Li), i = 1, 2. Now, we choose a basisSN

c = {b1, . . . ,b4N−4} for our

finite-dimensional constrained configuration spaceHN
c

.
= span(SN

c ) ⊂ Hu:

bi =


0
0

l
(1)
i+1

0
0

 , i = 1, · · · , N − 2, bN−2+i =


b
(1)
i

0
0
0
0

 , i = 1, · · · , N − 3,

and the remaining basis elements are chosen so as to satisfy(∗).
For the sake of simplicity, in what follows, no internal joint moment effects will be con-

sidered, i.e., we assumeb = k = 0 and thereforeMQ(t) ≡ 0 (see equation (13) ). Us-
ing the weak formulations of equations (1)-(3)-(9)-(10)-(11)-(12) with test functionsΦ =
(Φ1, Φ2, Φ3, Φ4, ΦJ)T ∈ HN

c ⊂ (L2(0, L1)× L2(0, L2))
2 × lR4, integrating by parts and us-

ing boundary conditions (2) and (4), leads to the weak-form

ρ1A1

[
〈w1

tt, Φ
1〉+ 〈u1

tt, Φ
3〉

]
+ ρ2A2

[
〈w2

tt, Φ
2〉+ 〈u2

tt, Φ
4〉

]
+ 〈Mηη̈, ΦJ〉lR4

+ 〈E1I1w
1
ss + γ1w

1
sst, Φ

1
ss〉+ 〈E2I2w

2
ss + γ2w

2
sst, Φ

2
ss〉

+ 〈E1A1u
1
s + µ1u

1
st, Φ

3
s〉+ 〈E2A2u

2
s + µ2u

2
st, Φ

4
s〉+ 〈CΦ, F 〉lR6 = 0 , (52)

whereC is the operator defined in (51),F is as given in (40), andMη is the matrix defined in
(38). Here,〈 , 〉lR6 refers to the inner-product inlR6, while 〈 , 〉 refers to theL2 inner-product.

Following the usual Galerkin procedure, we use the basis{b1, . . . ,b4N−4} both to approxi-
mate the solution 

w1(t)
w2(t)
u1(t)
u2(t)
η(t)

 ≈
4N−4∑
j=1

zj(t)bj ,

and also as test functionsΦ. We use the notationbj =
(
b1

j ,b
2
j ,b

3
j ,b

4
j ,b

J
j

)T
, j = 1, 2, . . . , 4N−

4. Note that in this setting the last term in (52) vanishes since by construction the basis vectors
satisfyCbj = 0 ∈ lR6.
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This leads to the finite-dimensional model

MN z̈N(t) + DN żN(t) + KNzN(t) = 0 ∈ lR4N−4 , (53)

where the(4N − 4)× (4N − 4) matrices are given by:

MN
i, j = (ρ1A1)

[
〈b1

j ,b
1
i 〉+ 〈b3

j ,b
3
i 〉

]
+ (ρ2A2)

[
〈b2

j ,b
2
i 〉+ 〈b4

j ,b
4
i 〉

]
+ 〈Mηb

J
j ,bJ

i 〉lR4 (54)

KN
i, j = (E1I1)

[
〈(b1

j)
′′, (b1

i )
′′〉

]
+ (E2I2)

[
〈(b2

j)
′′, (b2

i )
′′〉

]
+ (E1A1)

[
〈(b3

j)
′, (b3

i )
′〉
]
+ (E2A2)

[
〈(b4

j)
′, (b4

i )
′〉
]

(55)

DN
i, j = γ1

[
〈(b1

j)
′′, (b1

i )
′′〉

]
+ γ2

[
〈(b2

j)
′′, (b2

i )
′′〉

]
+ µ1

[
〈(b3

j)
′, (b3

i )
′〉
]
+ µ2

[
〈(b4

j)
′, (b4

i )
′〉
]

. (56)

4 NUMERICAL RESULTS

We present first some numerical results obtained with the geometric approach described in
section 3.2. Initially, we compare our numerical approximation toexactresults from [6, see
pages 431, 432]. For this purpose we specify some geometric and material properties of the
beams in Table 1.

Table 1: Beam parameters

Parameter Value
Length 1.22555 m

Diameter 0.1054 m
Thickness 0.0015 m

Material Density 1149kg/m3

Young’s Modulus 0.9 1011 N/m2

Table 2: Low-inertia joint parameters

Parameter Value
leg mass 0.2797 mg
leg length 1.22555 mm
pin mass 0.1399 mg

With these properties the mass of the beam is 0.6993 kg. For the current comparison we
specify joint parameters in Table 2. With these values the joint mass is10−6 that of the beam,
with 40 % of the joint mass in each leg, and 20 % in the pin. The length of a joint leg is 0.1
% of the beam’s length, and the center of mass of the joint leg is at its mid-point. Thus, the
joint-inertia terms are quite small.

We tookNu
1 = Nu

2
.
= Nu andNw

1 = Nw
2

.
= Nw. As noted above, theexactvalues in Table 3

are from D. Hartog.6 Specifically, listed as modes1 and3 are first two transverse modes of a
clamped-freebeam; listed modes2 and4 are the first two transverse modes of aclamped-pinned
beam; and, listed mode5 is the first axial mode of aclamped-freebeam. In our computed mode-
shapes, modes1− 4 exhibit virtually no axial motion, while mode5 has no transverse motion.
Additionally, modes1 and3, show non-zero transverse end-displacement and equal end-slopes,
while modes2 and4, show zero transverse end-displacement and opposite end-slopes. Lastly,
the transverse modal frequencies from6 are given to only 2 or 3 digits. We conclude that the
results from our MATLAB code are reasonable.

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

2262



Table 3: Comparison withexactresults

Nu Nw ω1 ω2 ω3 ω4 ω5

2 8 771.9 3378.5 4838.4 10957.3 11636.9
4 8 771.9 3378.5 4838.4 10957.3 11416.6
8 8 771.9 3378.5 4838.4 10957.3 11361.8
16 8 771.9 3378.5 4838.4 10957.3 11348.1
32 8 771.9 3378.5 4838.4 10957.3 11344.7
32 32 771.9 3378.3 4837.6 10947.8 11344.7
64 64 771.9 3378.5 4838.4 10957.3 11343.9

exact 773 3380 4830 10980 11343.6

4.1 Equilateral configuration

The numerical approximation procedures are now applied to a two-beam system withϕ1 =
ϕ2 = 60o (an equilateral configuration). Beam parameters are as given in Table 1 while nominal
joint parameters are given in Table 4. The mass of the joint is 20 % that of the beam, and is

Table 4: Nominal joint parameters

Parameter Value
leg mass 55.94 g
leg length .122555 m
pin mass 27.97 g

distributed as described above. The length of a joint leg is 10 % of the beam’s length, and the
center of mass of the joint leg is at its mid-point.

4.2 Undamped Frequencies

As an initial exercise, we study mesh-convergence of modal frequencies for the undamped
system. Once again we tookNu

1 = Nu
2

.
= Nu andNw

1 = Nw
2

.
= Nw. Note that our software

implementation requires thatNw > 6. From Table 5, we conclude thatNu = 16, Nw = 16
provides reasonable accuracy. Modal shapes for the first four frequencies (usingNu = Nw =
32) are shown in Figures 3-6. It can be seen that the first mode involves rotation (θ1 = θ2 = −1)
andvertical translation (y = −0.0477) of the joint, but very littlex motion. The beams move up
and down in concert, when beam-1 is in compression, beam-2 is in tension. The second mode
displays smallhorizontal translation. The bending motions are perfectly out-of-phase; both
moving outward or both moving inward, while the axial motions are perfectly in-phase. In the
third mode the beam motions are similar to the first, but the joint translation (y) is much greater.
The fourth mode is similar to the second; bending motions are in-phase, while axial motions
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Table 5: Mesh convergence

Nu Nw ω1 ω2 ω3 ω4

2 8 2721 2801 7285 8852
4 8 2721 2801 7273 8838
8 8 2721 2801 7269 8834
16 16 2721 2801 7267 8829
32 32 2721 2801 7267 8829
64 64 2721 2801 7267 8829
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Figure 3:1st mode
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Figure 4:2nd mode
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Figure 5:3rd mode
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Figure 6:4th mode
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are out-of-phase. Here, again, joint translation (x) is larger than in the second mode. Note that
the frequency labels in these figures are based on dimensionless time. The natural time unit,
suggested by the axial equation, is given bytu

.
= L

√
ρ/E and evaluates to .138474496 ms.

Next, we study the effects of the joint-mass parameter on the first few modal frequencies. In
each case, each joint-leg is 40 % of the joint-mass, while the pin is 20 %. In these calculations
we usedNu = Nw = 32. Recall that the latter two modes exhibit more joint translational

Table 6: Joint mass effect

Joint Mass ω1 ω2 ω3 ω4

10−6 2739 2809 8116 9065
.001 2739 2809 8113 9064
.010 2738 2809 8077 9056
.050 2735 2807 7913 9017
.100 2730 2805 7699 8963
.200 2721 2801 7267 8829
.500 2692 2789 6169 8208

motion than the first two; thus, it seems reasonable that these modal frequencies depend more
strongly on the joint mass.

4.3 Damping Ratio

The damping characteristics, parameterized by the constantsµ1, µ2, γ1 andγ2 in our model, are
arguably the most troublesome to estimate. Initially, we takeµ1 = µ2

.
= µ = 10 kg m/s, γ1 =

γ2
.
= γ = 0.1 kg/s. We compute eigenvalues of the system (approximated byNu = Nw = 32).
Figure 7 shows the distribution of the eigenvalues. Figures 8 and 9 have been truncated

to highlight lower frequencies. Note that most of these eigenvalues are nearly repeated roots.
It appears that in one of the modes the bending motions of the beams are identical and nearly
in-phase, while the axial motions are identical and nearly 180o out-of-phase. The other mode at
nearly the same frequency and damping has identical, nearly in-phase axial motions and iden-
tical, nearly 180o out-of-phase bending motions. Table 7 shows the modal damping parameter
in the first four modes for several values of the damping parametersµ andγ. It appears that the
axial damping parameter (µ) has little effect on the first four modes, while the damping ratios
vary approximately linearly with the transverse damping parameter (γ).

4.4 Response to initial data

Our final numerical study is solution of an initial value problem for the two-beam system. For
given values of the joint displacements (i.e. x, y, θ1, θ2) we compute the compatible values of
the beam end-conditions (i.e. u1(L1), u2(L2), w1(L1), w1

s(L1), w2(L2), w2
s(L2)). Assuming a

linear distribution of axial beam displacement, and a cubic distribution of bending displacement
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Figure 8: Eigenvalue Distribution (close-up)
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Figure 9: Eigenvalue Distribution (close-up)

Table 7: Damping parameter survey

µ γ ζ1 ζ2 ζ3 ζ4

1 .1 0.0020 0.0022 0.0023 0.0053
10 .1 0.0021 0.0022 0.0028 0.0055
50 .1 0.0021 0.0023 0.0048 0.0065
10 .2 0.0041 0.0045 0.0050 0.0107
10 .5 0.0102 0.0112 0.0117 0.0266
10 1 0.0204 0.0224 0.0228 0.0538
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Figure 10: Initial displacement
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Figure 11: Final displacement

(along with the boundary conditionsu1(0) = w1(0) = w1
s(0) = u2(0) = w2(0) = w2

s(0) = 0)
we can solve uniquely for the axial and bending distributions. With these in hand, the strain
energy can be evaluated.

For the initial displacement of the two-beam system, we specifyx = 0, y = 1 mm and
compute valuesθ1 and θ2 so as to minimize the initial strain energy, using the linear/cubic
beam shapes as noted above. Figure 10 displays the initial deflections of the beams. Note
that with y positive the upper beam is in compression, while the lower beam is in tension.
Both beams exhibit positive bending displacements. Figure 12 displays the time history of
the joint translation; the simulation maintainsx = 0, as expected. Figure 11 displays the final
deflections of the beams (att = 0.01 s). The anti-symmetry of the axial displacements has been
preserved, while the bending displacements remain in-phase. Note that the axial displacement
indicates non-uniform strain (i.e. uξ is not constant). Figure 13 shows the time history of the
total mechanical energy. Approximately one-half of the energy is dissipated in the first 0.01
sec. Figure 14 shows the energy partition among axial (beam 1-kinetic plus potential), bending
(beam 1-kinetic plus potential) and joint motions. The energy values are normalized by the total
instantaneous energy, so the total should be unity. Perhaps the most surprising feature is that, at
times, the joint carries up to 40% of the total energy.

Finally we present some numerical results obtained with the projection method described in
Section 3.1.1. Figures 15, 16, 17 show the distribution of the eigenvalues obtained with this
method. We observed that they are almost identical to those obtained with the previous method.
Similarly, Figure 18 shows the time evolution of the joint’s tip obtained with this method for
the same initial conditions described in Section 4.4.
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Figure 12: Joint displacement history
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Figure 13: Energy history
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Figure 14: Energy partition
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Figure 15: Eigenvalue distribution, projection method
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Figure 16: Eigenvalue distribution, projection method
(close up)
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Figure 17: Eigenvalue distribution, projection method
(close up)
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Figure 18: Evolution of the joint, projection method

5 CONCLUSIONS

In this article, a model for the dynamics of tow beams with Kelvin-Voigt damping, coupled to a
joint through two legs was presented. The total energy of the system was computed and its dis-
sipativeness was shown. Two different approaches were followed to develop finite dimensional
approximations for the solutions of the system. One approach used a projection method to en-
force the dynamic boundary conditions while the other consisted of enforcing these boundary
conditions into the basis functions. Numerical results were presented for both methods. Fre-
quency and damping characteristics were analyzed and the response of the system to initial data
was studied.
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