4,053 research outputs found

    Tactical authenticity in the production of autoethnographic mad narratives

    Get PDF
    First-person accounts of madness and of encountering psychiatric services provide important sociocultural and psychological knowledge about the subjectivity of distress. The importance of such accounts isoften based upon a claim of the authenticity of personal experience. However, authenticity is a highly heterogeneous concept: a popular current manifestation of the discourse of authenticity is in positive psychology, where it is often underpinned by humanist assumptions such as the rational autonomous self. The post-structuralist critique of humanism challenged such essentialist notions some time agoand has been adopted explicitly by research methodologies such as autoethnography. The purpose of this article is to argue that this tension - between the value of methods such as autotechnography that offer a legitimate source of knowledge regarding the subjective experience of madness on the one hand, and the problems with an essentialist conception of the 'authentic' self on the other - can be addressed by the deployment of a reconceptualised form of authenticity based on Gayatri Spivak's (1988) notion of 'strategic essentialism',especially when modified by Michel De Certeau's (1984) distinction between 'tactics' and 'strategies'. The implications of this distinction in terms of developing autoethnographies of distress is then discussed

    The velocity structure of Cygnus OB2

    Get PDF
    The kinematic structure of the Cygnus OB2 association is investigated. No evidence of expansion or contraction is found at any scale within the region. Stars that are within ∼\sim 0.5 parsecs of one another are found to have more similar velocities than would be expected by random chance, and so it is concluded that velocity substructure exists on these scales. At larger scales velocity substructure is not found. We suggest that bound substructures exist on scales of ∼\sim 0.5 parsecs, despite the region as a whole being unbound. We further suggest that any velocity substructure that existed on scales > 0.5 parsecs has been erased. The results of this study are then compared to those of other kinematic studies of Cygnus OB2

    Mass segregation in star clusters is not energy equipartition

    Get PDF
    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation -- which is observed in many star clusters -- is not a signature of energy equipartition from two-body relaxation

    Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants

    Get PDF
    Objectives: Staphylococcus aureus small colony variants (SCVs) cause persistent infections and are resistant to cationic antibiotics. Antimicrobial peptides (AMPs) have been suggested as promising alternatives for treating antibiotic-resistant bacteria. We investigated the capacity of the human cationic AMP LL-37 to kill SCVs in the presence of physiological concentrations of bicarbonate, which are reported to alter bacterial membrane permeability and change resistance of bacteria to AMPs. Methods: MBCs of LL-37 for S. aureus SCVs with mutations in different genes in the presence and absence of bicarbonate were determined. Results: In the absence of bicarbonate, SCVs of S. aureus strains LS-1 and 8325-4 had the same level of resistance to LL-37 as the parental strain (8 mg/L). In the presence of bicarbonate, hemB, menD and aroD SCVs of LS-1 had high-level resistance to LL-37 (≥128 mg/L) compared with the parental strain (16 mg/L). However, only the aroD SCV of strain 8324-5 showed high-level resistance. 8325-4 harbours mutations in two genes, tcaR and rsbU, which are involved in antimicrobial sensing and the stress response, respectively. When rsbU was repaired in 8325-4 it displayed high-level resistance to LL-37 in the presence of bicarbonate. This phenotype was lost when tcaR was also repaired, demonstrating that RsbU and TcaR are involved in LL-37 resistance in the presence of bicarbonate. Conclusions: S. aureus SCVs would be resistant to high concentrations of LL-37 in niches where there are physiological concentrations of bicarbonate and therefore this AMP may not be effective in combating SCVs

    Substrate polyspecificity and conformational relevance in ABC transporters: new insights from structural studies

    Get PDF
    Transport of molecules and ions across biological membranes is an essential process in all organisms. It is carried out by a range of evolutionarily conserved primary and secondary transporters. A significant portion of the primary transporters belong to the ATP-binding cassette (ABC) superfamily, which utilise the free-energy from ATP hydrolysis to shuttle many different substrates across various biological membranes, and consequently, are involved in both normal and abnormal physiology. In humans, ABC transporter-associated pathologies are perhaps best exemplified by multidrug-resistance transporters that efflux many xenobiotic compounds due to their remarkable substrate polyspecificity. Accordingly, understanding the transport mechanism(s) is of great significance, and indeed, much progress has been made in recent years, particularly from structural studies on ABC exporters. Consequently, the general mechanism of 'alternate access' has been modified to describe individual transporter nuances, though some aspects of the transport process remain unclear. Moreover, as new information has emerged, the physiological relevance of the 'open-apo' conformation of MsbA (a bacterial exporter) has been questioned and, by extension, its contribution to mechanistic models. We present here a comprehensive overview of the most recently solved structures of ABC exporters, focusing on new insights regarding the nature of substrate polyspecificity and the physiological relevance of the 'open-apo' conformation. This review evaluates the claim that the latter may be an artefact of detergent solubilisation, and we hypothesise that the biophysical properties of the membrane play a key role in the function of ABC exporters allowing them to behave like a 'spring-hinge' during their transport cycle

    LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM

    Get PDF
    Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1–CD98hc, a HAT, transports essential amino acids and drugs across the blood–brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1–CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3–3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127–130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination

    A test for the equality of multiple Sharpe ratios

    Get PDF

    Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen

    Get PDF
    Polyomaviruses such as BK virus and JC virus have been linked to several diseases, but treatments that thwart their propagation are limited in part because of slow growth and cumbersome culturing conditions. In contrast, the replication of one member of this family, Simian Virus 40 (SV40), is robust and has been well-characterized. SV40 replication requires two domains within the viral-encoded large tumor antigen (TAg): The ATPase domain and the N-terminal J domain, which stimulates the ATPase activity of the Hsp70 chaperone. To assess whether inhibitors of polyomavirus replication could be identified, we examined a recently described library of small molecules, some of which inhibit chaperone function. One compound, MAL2-11B, inhibited both TAg's endogenous ATPase activity and the TAg-mediated activation of Hsp70. MAL2-11B also reduced SV40 propagation in plaque assays and compromised DNA replication in cell culture and in vitro. Furthermore, the compound significantly reduced the growth of BK virus in a human kidney cell line. These data indicate that pharmacological inhibition of TAg's chaperone and ATPase activities may provide a route to combat polyomavirus-mediated disease. © 2009 Elsevier B.V. All rights reserved

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP
    • …
    corecore