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This paper provides a test for the equality of multiple Sharpe ratios. First we
extend the multivariate Sharpe ratio statistic of Leung and Wong for the case when
excess returns are independently and identically distributed. We then provide a
test that holds under the much more general assumption that the excess returns
are stationary and ergodic, making use of the generalized method of moments
and heteroscedasticity and autocorrelation consistent estimation of covariance
matrixes. We repeat Leung and Wong’s testing for equality of the Sharpe ratios
of 18 iShares using our new tests and conclude that the hypothesis of equality
cannot be rejected at the 1% level.

1 INTRODUCTION

Sharpe (1994) defined the Sharpe ratio (SR) as:

SR D
EŒRF �RB �

.VarŒRF �RB �/1=2
(1.1)
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where RF is the arithmetic return on fund/stock/asset F over one time interval and
RB is the arithmetic return on benchmark asset B over the same interval. Subtracting
RB from RF gives the differential (or excess) return, d . SR, then, is the expected
value of d divided by its standard deviation. This definition is an improvement on
the first version of the SR, introduced in Sharpe (1966) and then called the reward-
to-variability ratio. The more recent definition takes into account the possibility that
RB may vary over time.

Sharpe (1994) gives several examples where choosing the best fund to invest in
(in terms of maximizing the return on investor’s assets) is equivalent to choosing
the fund with the highest SR. One example is when the investor has cash in a bank
account and the benchmark asset is a risk-free bond. However, other examples where
the SR is not sufficient to decide which fund is best are also given. In particular, if an
investor’s assets are correlated with each of a selection of funds, choosing the fund
with the highest SR may not be optimal (Sharpe 1994). Nevertheless, Sharpe ratios
are commonly used as arguments for (or against) investing in a fund or asset.

Hypothesis tests for the equality of funds’ Sharpe ratios depend critically on the
assumptions made of the excess returns. Jobson and Korkie (1981) developed pairwise
and multivariate tests for equality assuming that the funds’ excess returns are well
modeled by a multivariate normal distribution. Memmel (2003) later improved their
pairwise test, again assuming normality. Ledoit and Wolf (2008) provide a pairwise
test that, via a bootstrap approach, allows for returns of a time series nature and
returns with heavy tails. As such, their test is of greater practical use than the previous
pairwise tests. Leung and Wong (2008) sought a multivariate test that only assumes
excess returns to be independent and identically distributed (iid), but we shall see that
their test statistic is valid only under the assumption of normality. In this paper we
will address this issue and present the correct test statistic.

In addition, we will also provide a test that requires the excess returns to be sta-
tionary and ergodic and which therefore permits the returns to exhibit properties that,
although violations of the iid assumption, are common to financial returns, such as
autocorrelation and conditional heteroscedasticity. We achieve this by employing the
generalized method of moments estimators of Hansen (1982), an approach to creating
hypothesis tests for Sharpe ratios that was outlined in Lo (2002).

The funds we use to illustrate our test for equality of multiple Sharpe ratios are those
used in Leung and Wong (2008) and Gasbarro et al (2007), namely 17 iShares and
Standard & Poor’s depository receipts. The iShares began trading on the American
Stock Exchange in March 1996 as world equity benchmark shares and are designed
to track the Morgan Stanley Capital International foreign stock market indexes. The
Standard & Poor’s depository receipts track the S&P 500 index and began trading in
January 1993 and shall be used as an American stock market index.
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Gasbarro et al (2007) administered the pairwise test for equality of Sharpe ratios of
Memmel (2003) on all possible pairs on the 18 tradable securities and found that “none
of the Sharpe Ratios are significantly different”. Leung and Wong (2008) repeated
these tests and drew the same conclusion. However, they also applied their multivariate
test for equality to the same data set and concluded that “the Sharpe ratios of some
iShares are different from the others for each year as well as the entire sample”. We
shall test for the equality of the Sharpe ratios a third time, using the updated and more
general version of Leung and Wong’s (2008) multivariate test.

This paper is structured as follows. In Section 2 we derive the asymptotic distribu-
tion of multiple Sharpe ratios, under the assumption that the excess returns of each
fund are iid. The relevant calculations are given in Appendix A, which also shows how
our results reduce to existing results when we consider only one stock and to the test of
Leung and Wong (2008) when returns are multivariate normal. In Section 3, we derive
the hypothesis test for the equality of multiple Sharpe ratios in the iid case, following
Leung and Wong’s (2008) lead, itself following a standard statistical procedure found
in Johnson and Wichern (2007). Also included is a simulation study that demonstrates
the inappropriateness of Leung and Wong’s (2008) test when returns are nonnormal.
In Section 4, we use the generalized method of moments of Hansen (1982) and the
heteroscedasticity and autocorrelation robust (HAC) inference methods outlined in
Section 3.1 of Ledoit and Wolf (2008) in the bivariate case to develop a hypothesis
test that does not require excess returns to be iid. We apply this test to the 17 iShares
and depository receipts used in Leung and Wong (2008) and Gasbarro et al (2007).
Finally, in Section 5 we summarize the results and conclude.

2 ASYMPTOTIC DISTRIBUTION OF THE SHARPE RATIO

Before the distribution of the Sharpe ratio can be derived, assumptions must be made
about the distribution of the underlying random variable of which the Sharpe ratio is
a function: the excess return.

We shall consider k funds and their daily excess returns over the past n days. Fund
i has excess return Xit on day t . Consider the sample mean of the excess returns and
the sample mean of the squared excess returns for fund i :

Omi1 WD
1

n

nX
jD1

Xij and Omi2 WD
1

n

nX
jD1

.Xij /
2; (2.1)

which are unbiased estimators for the first and second moments (mi1 and mi2) of Xit
respectively. We shall assume that the daily k-variate vectors of excess returns are
iid and that the daily excess return for each fund has a finite fourth moment. These
conditions are general enough to include a wealth of return models (including Lévy
processes) and are required in order for the central limit theorem to be used.
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The multivariate central limit theorem states that if Y 1; Y 2; : : : ; Y n are vectors of
independent observations from any population with mean vector � and finite covari-
ance matrix ˙ then

p
n. NY � �/

D
�! N.0;˙/; (2.2)

where NY is the sample mean vector and
D
�! represents asymptotic convergence in

distribution.
With the above result in mind, we define the 2k�1 vectorX t which has entriesXit

for rows 1 to k and X2it for rows k C 1 to 2k. Thus X t contains the historical excess
returns and squared excess returns for all funds on day t . Our assumptions for the
behavior of the excess returns permit the use of the multivariate central limit theorem,
which, in turn, tells us the asymptotic distribution of the sample mean vector ( NXn) of
X t . In this case, mean vector � has entriesmi1 for rows 1 to k andmi2 for rows kC 1
to 2k. Covariance matrix˙ may be written in terms of three k � k submatrixes A, B
and C where

˙ D

 
A C

C T B

!
(2.3)

andA is the covariance matrix for the k excess returns,B is the covariance matrix for
the k squared excess returns and C is the covariance matrix for the k excess returns
and their squares.

The Sharpe ratio for fund i , SRi , is equal to the mean excess returnmi1 divided by
the standard deviation of the excess return

p
mi2 � .m

i
1/
2. As we know the asymptotic

distribution of NXn we may use the multivariate delta method to find the asymptotic
distribution of the k � 1 vector of Sharpe ratio estimates. Let cSR be a k � 1 vector
with entries Omi1=

p
Omi2 � . Om

i
1/
2 for each row i . Thus the i th component of cSR is the

natural estimator for the Sharpe ratio of fund i .
Define vector function f by the following:

f W R2k 7! R
k and for x D .x1; x2; : : : ; x2k/

T;

fi WD .f .x//i WD
xi

p
xkCi � x

2
i

for i D 1; : : : ; k: (2.4)

It is clear that f . NXn/ is equal to cSR, since for i D 1; : : : ; k

fi D
Omi1p

Omi2 � . Om
i
1/
2
D .cSR/i ; (2.5)

which is the estimator for the Sharpe ratio of fund i . The multivariate delta method
states that if f has a differential at � and�

@f

@�

�
ij

WD
@fi

@xj

ˇ̌̌̌
xD�

for i D 1; : : : ; k and j D 1; : : : ; 2k; (2.6)
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then the asymptotic distribution of f . NXn/ is given by

p
n.f . NXn/ � f .�//

D
�! N

�
0;

�
@f

@�

�
˙

�
@f

@�

�T�
: (2.7)

Calculating the entries of the Jacobian matrix, we find that

�
@f

@x

�
ij

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if j ¤ i or j ¤ i C k;

xkCj

.xkCj � x
2
j /
3=2

if j D i;

�xj

2.xkCj � x
2
j /
3=2

if j D i C k;

(2.8)

so it is certainly true that f has a differential at � as each fund has a nonzero stan-
dard deviation. Hence the delta method may be applied and we find the asymptotic
distribution of our vector of estimates of Sharpe ratios for the k funds:

p
n.cSR � SR/

D
�! N.0;D˙DT/; (2.9)

where D is a k � 2k matrix

DT D

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

m12
.m12 � .m

1
1/
2/3=2

0 : : : 0

0
m22

.m22 � .m
2
1/
2/3=2

:::

:::
: : : 0

0 : : : 0
mk2

.mk2 � .m
k
1/
2/3=2

�m11
2.m12 � .m

1
1/
2/3=2

0 : : : 0

0
�m21

2.m22 � .m
2
1/
2/3=2

:::

:::
: : : 0

0 : : : 0
�mk1

2.mk2 � .m
k
1/
2/3=2

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
(2.10)

It is with respect to the asymptotic covariance matrix D˙D that our result differs
from Leung and Wong (2008). In their paper, the authors derive the asymptotic dis-
tribution for the 2k � 1 vector O� WD . Nx1; Nx2; : : : ; Nxk; s

2
1 ; s

2
2 ; : : : ; s

2
k
/T, where Nxi and

s2i are the sample mean and variance of the excess returns of fund i . Quoting from
the paper:
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According to the standard asymptotic distribution theory, we have

p
nŒ O� � ��

D
�! N.0;˙/

where

˙ D

 
˙1 0
0 ˙2

!
is a 2k � 2k matrix such that

˙1 D

0BB@
�21 : : : �1k
:::

: : :
:::

�1k : : : �2
k

1CCA ; ˙2 D

0BB@
2�41 : : : 2�2

1k
:::

: : :
:::

2�2
1k

: : : 2�4
k

1CCA
and 0 is a k � k matrix of zeros.

However, this is only true if the excess returns for each fund are normally distributed.
The zero matrixes in ˙ correspond to independence of the sample mean and sample
standard deviation, a property unique to the normal distribution. Having applied the
delta method, Leung and Wong (2008) show that their asymptotic variance agrees
with those found in Lo (2002) and Memmel (2003), but both these papers assumed
excess returns to be normally distributed. Therefore Leung and Wong (2008) does
not provide the asymptotic distribution for multiple Sharpe ratio when excess returns
are iid, but only when they follow a multivariate normal distribution. In Appendix A
we calculate the entries ofD˙DT explicitly and show that they are equivalent to the
entries of the covariance matrix in Leung and Wong (2008) only when returns follow
a multivariate normal distribution.

3 A HYPOTHESIS TEST FOR THE EQUALITY OF MULTIPLE
SHARPE RATIOS: IID CASE

In this section we follow Leung and Wong (2008) and derive a hypothesis test for
the equality of multiple Sharpe ratios that adheres to a repeated-measures design for
comparing treatments, explained in Chapter 6 of Johnson and Wichern (2007). It was
proven in the previous section that if the daily excess returns of k different funds are
iid with finite fourth moments, then when n (the sample size) is large, the distribution
of the k � 1 vector of sample Sharpe ratios of each fund is well approximated by
a multivariate normal distribution. In other words, if n is large, we are justified in
writing cSR � Nk

�
SR;

1

n
˝

�
; (3.1)

where Nk refers to a multivariate normal distribution with k variables and˝ is equal
to D˙DT.
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We wish to test the hypothesis that the Sharpe ratios of k different funds are equal.
Thus, our null hypothesis H0 is the following:

H0 W SR1 D SR2 D � � � D SRk :

Let us define .k � 1/ � k contrast matrix Q as

Q D

0BBBB@
1 �1 0 : : : 0

0 1 �1 : : : 0
:::

: : :
: : :

:::

0 : : : : : : 1 �1

1CCCCA (3.2)

and note that if the k Sharpe ratios are equal, QSR D 0. Thus, a hypothesis test for
equality of k Sharpe ratios may be formulated as

H0 W QSR D 0 versus H1 W QSR ¤ 0:

According to Johnson and Wichern (2007) if X1; X2; : : : ; Xn is a sample from
a multivariate normal distribution with k variables, mean vector � and covariance
matrix ˙ we reject H0 W �1 D �2 D � � � D �k if

T 2 D n.Q NXn/
T.QḃQT/�1.Q NXn/ >

.n � 1/.k � 1/

.n � k C 1/
Fk�1;n�kC1.˛/; (3.3)

whereFk�1;n�kC1.˛/ is the upper (100˛)th percentile of anF -distribution with k�1
and n�kC1 degrees of freedom and ḃ is the sample covariance matrix, the estimator
for ˙ .

In our case we do not know for sure that the X i follow a multivariate normal
distribution. However, it is true that for large n � k,

n. NXn � �/
T.ḃ/�1. NXn � �/ is approximately �2k;

which in turn implies that

T 2 D n.Q NXn/
T.QḃQT/�1.Q NXn/ is approximately �2k�1

and thus our (100˛)%-level hypothesis test for the equality of multiple Sharpe ratios
under the assumption of iid returns is as follows:

Reject H0 W SR1 D SR2 D � � � D SRk

if
T 2 D n.QcSR/T.Q Ő QT/�1.QcSR/ > �2k�1.˛/; (3.4)
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TABLE 1 Empirical rejection probabilities (%) for Leung and Wong’s (2008) test (LW) and
the test described in this paper (WYY) when applied to iid returns generated from various
multivariate distributions.

k D 5 k D 10 k D 20‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ
˛ ˛ ˛‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ

Distribution Test 1% 5% 10% 1% 5% 10% 1% 5% 10%

Normal LW 0.7 4.5 9.5 1.1 5.2 10.1 1.1 5.0 10.1
WYY 0.7 4.7 9.7 1.2 5.6 10.9 1.4 6.2 11.9

t8 LW 2.8 10.2 17.2 3.8 12.7 21.3 5.0 16.1 25.9
WYY 1.1 5.4 10.8 1.5 6.2 12.0 1.6 6.8 12.7

t6 LW 5.4 14.6 23.8 8.1 20.3 30.5 13.1 29.7 41.0
WYY 1.3 5.9 11.0 1.6 6.3 12.1 2.2 8.7 15.4

t4 LW 24.1 39.4 49.2 39.4 56.4 65.9 58.9 74.7 82.3
WYY 2.1 8.0 13.9 3.5 10.6 18.1 6.8 17.3 26.9

where �2
k�1

is the upper (100˛)th percentile of a �2-distribution with k � 1 degrees
of freedom and Ő is obtained from the sample covariance matrix and is the estimator
for ˝.

As an illustration of the difference between the test advocated in this paper and that
of Leung and Wong (2008), we conduct a simulation study similar to that in Ledoit
and Wolf (2008), with the objective of computing empirical rejection probabilities
under the null hypothesis. We simulate 2000 returns from k assets from a multivariate
distribution with mean vector � and covariance matrix V . We take � as a k-vector
of ones and V as a k � k matrix whose diagonal values are all one and off-diagonal
values are all one half (these arbitrary values are extensions of the values used the
simulation study of Ledoit and Wolf (2008)). We then apply Leung and Wong’s (2008)
test (LW) and our test (WYY) using the T 2 statistic given in (3.4) for the equality of
the Sharpe ratios of the k assets. The p-value of each test is recorded and we note
whether the null hypothesis is rejected at the 1%, 5% and 10% levels.

The simulation and testing of returns is repeated 10 000 times and the empirical
rejection probabilities are recorded. The multivariate distributions we consider are
the multivariate versions of the normal, t4, t6 and t8 distributions. According to the
theory detailed above, the WYY test should handle the nonnormal returns better than
the LW test.

The results presented in Table 1 strongly suggest that this is the case. As a rule of
thumb, the LW test is at least twice as likely to reject the null hypothesis at a given
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confidence level when the returns have heavy tails. The heavier the tails and the more
assets under consideration, the greater the error of the LW test compared to the WYY
test.

The test we derived in this section generalizes previous tests for the equality for
multiple Sharpe ratios that were only suitable for multivariate normal iid returns. The
WYY test holds for iid returns with finite fourth moments and although this extension
is helpful, it falls short of being practically useful as in reality many returns exhibit
time-series properties. We address this issue in the next section.

4 A HYPOTHESIS TEST FOR THE EQUALITY OF MULTIPLE
SHARPE RATIOS: NON-IID CASE

As an empirical example of the applicability of their hypothesis test, Leung and Wong
(2008) tested the equality of the Sharpe ratios of 17 iShares and Standard & Poor’s
depository receipts which they treated as the 18th, American, iShare for comparison.
They used the daily returns of all 18 securities from March 19, 1996 to December 31,
2003 (obtained from the Center for Research in Security Prices) and the three month
T-bill (downloaded from Datastream) as the benchmark asset.

We have shown that their test requires returns to be iid with a multivariate normal
distribution. Although the WYY test developed in Section 3 is an improvement, its
requirement of iid returns may be overly restrictive. Autocorrelation, for example, is
a noted feature of financial returns, but the WYY test, in its current version, cannot
handle it.

Let us see if the iShares data used in Leung and Wong (2008) exhibits significant
autocorrelation. In the univariate case, the Ljung–Box statistic (Ljung and Box 1978)
tests the null-hypothesis of no autocorrelation in a time series. Its multivariate ver-
sion, developed in Hosking (1980, 1981) and Li and McLoed (1981), tests the null
hypothesis

H0 W �1
D �

2
D � � � D �

m
D 0 (4.1)

where �
i

is the lag-i cross-correlation matrix of the returns of k-assets, against the
alternate hypothesis that �

i
¤ 0 for some i 2 f1; : : : ; mg. The test statistic Q.m/ is

calculated according to equation (6.1) of Hosking (1980). Applying this test to the
iShares data set (choosingm D 8 � ln.1961/), we find that the multivariate series is
strongly serially correlated. The results are shown in Table 2 on the next page.

Clearly any test assuming the iShares returns to be iid could produce misleading
results. It behooves us to generalize the necessary conditions of our multiple Sharpe
ratio test further, in order to at least provide a test that is safer for practitioners to use.

Two papers have already provided hypothesis tests for the Sharpe ratio under more
general conditions. Lo (2002), in the section on non-iid returns, finds the asymptotic
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TABLE 2 Results of testing iShares returns for autocorrelation.

Lag m 1 2 3 4 5 6 7 8

Q.m/ 2115 2534 2969 3404 3841 4264 4696 5074
p-value 0 0 0 0 0 0 0 0

distribution of a generalized method of moments (GMM) estimator of a single Sharpe
ratio under the assumption that the distribution of the returns is stationary and ergodic
(and also satisfies some regularity conditions). Section 3.1 of Ledoit and Wolf (2008)
meanwhile, starts with the asymptotic distribution of the difference between two
Sharpe ratios under similar general assumptions for the excess return and discusses
various methods of estimating the limiting covariance matrix via heteroscedasticity
and autocorrelation consistent (HAC) estimation. Both the GMM and HAC estimation
methods can be readily extended to the case of multiple Sharpe ratios and thus we
can weaken the assumptions required of the WYY test. We do so in this section.

The pattern for defining a test for the equality of multiple Sharpe ratios under more
relaxed assumptions for the underlying excess return processes is the same as that
in the previous section: find a multivariate asymptotic distribution for the estimators
of interest; apply the multivariate delta method; use contrast matrixes to construct
the hypothesis test. Lo (2002) begins by using the limiting distribution of the GMM
estimator, as proven in Hansen (1982) and so shall we. Specifically, Theorem 3.1 of
Hansen (1982) applies and we repeat it here.

Theorem 4.1 Stochastic process fY n W � 1 < n < C1g has k components.
S is a parameter space that is a subset of R

q . ˇ
0

is the element of S we wish to
estimate. We consider function h W Rp � S 7! R

r , with r > q. Function h provides
an expression for the r orthogonality conditions that emerge from the parameters we
wish to estimate. We make the following assumptions.

(1) fY n W �1 < n < C1g is stationary and ergodic.

(2) S is an open subset of R
q that contains ˇ

0
.

(3) h.�; ˇ/ and @h=@ˇ.�; ˇ/ are Borel measurable for each ˇ 2 S and @h=@ˇ.Y ; �/
is continuous on S for each Y 2 R

p .

(4) @h=@ˇ.Y 1; �/ is first moment continuous at ˇ
0
, and EŒ@h=@ˇ.Y 1; ˇ0

/� exists,
is finite, and has full rank.
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(5) Let wn D h.Y n; ˇ0/ for �1 < n < C1 and

vj D EŒw0 j w�j ; w�j�1; : : : � � EŒw0 j w�j�1; w�j�2; : : : � for j > 0

and assume

(a) EŒw0w
T
0� exists and is finite;

(b) EŒwjw�j ; w�j�1; : : : � converges in mean square to zero;

(c)
P1
jD0 EŒvT

j vj �
1=2 is finite.

We also define the following terms.

� g
N
.ˇ/ WD .1=N /

PN
nD1 h.Y n; ˇ/.

� Let fa�N W N > 1g be a sequence of q by r random matrixes that converges in
probability to a constant matrix a�0 which has full rank.

� Define the GMM estimator to be a sequence of random vectors fb�N W N > 1g
that converges in probability to ˇ

0
for which the sequence f

p
Na�NgN

.b�N / W

N > 1g converges in probability to zero.

� d0 WD EŒ@h=@ˇ.Y 1; ˇ0
/�.

� Rw.j / WD EŒw0w
T
�j � and Sw WD

PC1
jD�1Rw.j /.

Supposing the assumptions above are satisfied, then f
p
N.b�N � ˇ0

/ W N > 1g

converges in distribution to a normally distributed random vector with mean zero and
covariance matrix .a�0d0/

�1a�0Swa
�T
0 .a

�
0d0/

�1.

As Lo (2002) notes, Theorem 3.1 of Hansen (1982) allows us to consider the asymp-
totic distribution of estimators of parameters of excess return processes that exhibit
non-iid characteristics such as “serial correlation, dependence on such factors as the
market portfolio, time-varying conditional volatilities, jumps, and other empirically
relevant phenomena”.

Let us apply the above theorem for our purposes. As before, we define the 2k � 1
vector X t which has entries Xit for rows 1 to k and X2it for rows k C 1 to 2k. The
parameters we wish to estimate aremi1 andmi2 for i 2 f1; : : : ; kg, which are also the
entries of the 2k � 1 mean vector �, the expected value of X t . Parameter space S is

a subset of R
2k that contains �. Define vector function h as follows:

h W R2k � S 7! R
2k

and for x D .x1; : : : ; x2k/T 2 R
2k and ˇ D .ˇ1; : : : ; ˇ2k/T 2 S,

hi D xi � ˇi for i D 1; : : : ; 2k:
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14 J. A. Wright et al

It is clear that .@h=@ˇ/.Y ; �/ D �I 2k where I n is the identity matrix of dimension
n. Thus, assumptions (3) and (4) of the theorem above are trivially satisfied and
in our case matrix d0 D �I 2k . Using the notation of Section 2, we easily see that
g
N
.ˇ/ D NXN � ˇ and so by choosing a�N D I 2k and b�N D NXN for allN , we satisfy

the conditions required of random matrix sequence .a�N / and GMM estimator .b�N /.
Thus, assuming that our excess returns satisfy assumptions (1) and (5) we have that

p
n. NXn � �/

D
�! N.0; Sw/: (4.2)

Recall vector function f defined in (2.4). As in Section 2, we may apply the
multivariate delta method with f to find the asymptotic distribution of cSR, the vector
of estimates of Sharpe ratios for the k funds:

p
n.cSR � SR/

D
�! N.0;DSwD

T/; (4.3)

whereD is the k � 2k matrix defined in (2.10). From this, we formulate a hypothesis
test for the equality of the Sharpe Ratios of k funds in the same fashion as Section 3:

Reject H0 W SR1 D SR2 D � � � D SRk

if
T 2 D n.QcSR/T.Q Ő QT/�1.QcSR/ > �2k�1.˛/; (4.4)

where �2
k�1

is the upper (100˛)th percentile of an �2-distribution with k � 1 degrees
of freedom,Q is the contrast matrix defined in 3.2 and Ő is an estimator forDSwD

T.
Application of the test thus requires estimation of matrixes D and Sw . Matrix D

can be estimated by replacing the moments of the excess return that appear in its
definition by the sample means of the excess returns and their squares. Finding a
consistent estimator for covariance matrix Sw however requires a more sophisticated
technique. Lo (2002) uses Newey and West’s (1987) procedure. Section 3.1 of Ledoit
and Wolf (2008) provides a good summary of HAC estimators of covariance matrixes,
of which there are many. We shall follow Lo (2002) and use the Newey–West estimator
for OSw , our estimator for Sw . Thus for our purposes the Newey–West estimator is
given by

OSw D
OV 0 C

mX
jD1

�
1 �

j

mC 1

�
Œ OV j C

OV
T
j �; (4.5)

where

OV j D
1

N

NX
tDjC1

h.X t ;
NXN /h.X t ;

NXN /
T: (4.6)

We shall choose m D bN 1=3c, as suggested in Newey and West (1994).
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TABLE 3 Results of applying the three tests to the iShares data.

LW WYY iid WYY non-iid
Year p-value p-value p-value

1996 0.880 0.836 0.416
1997 0.421 0.460 0.253
1998 0.919 0.906 0.464
1999 0.546 0.490 0.049
2000 0.992 0.991 0.802
2001 0.992 0.991 0.842
2002 1 1 0.994
2003 0.987 0.983 0.867

All 0.998 0.998 0.974
years

We are now in a position to apply the test derived in this section (WYY-non-iid)
to the iShares data set. For comparison we, also apply Leung and Wong’s (2008) test
and the test derived in Section 3. Thus, we shall use exactly the same set of data as
Leung and Wong (2008): 1961 daily (and therefore excess) returns for each of the 18
securities. The excess return of security i on day t , dit , was calculated by subtracting
that day’s daily return on the three month T-bill, rt , from the daily return without
dividends of security i , yit . Thus each iShare has 1961 excess returns, from which
their estimated Sharpe ratio is calculated as follows:1

cSRi D
Œ1=1961�

P1961
tD1 ditq

Œ1=1961�
P1961
tD1 d

2
it � .Œ1=1961�

P1961
iD1 dit /

2

: (4.8)

For further comparison with Leung and Wong (2008), we calculate a test for equality
of the Sharpe ratios for each year in the sample, making the corresponding changes
to our estimators, as well as for the whole sample. The results are summarized in
Table 3.

1 Leung and Wong (2008) use

bSRi D
Œ1=1961�

P1961
tD1 yit � rfq

Œ1=1961�
P1961
tD1 y

2
it � .Œ1=1961�

P1961
tD1 yit /

2
(4.7)

for each iShare i , where rf is “the three-month T-bill rate”. However, this benchmark return varies
over time so it is unsure as to what value rf takes. Our estimator for SRi is the modified estimator
recommended in Sharpe (1994) as it takes into account the possibility that the benchmark rate of
return may change and emphasizes the importance of the differential (or “excess”) return, d .
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Firstly, we note the contradiction between the results of Leung and Wong (2008)
which strongly rejected the null hypothesis of equality and the results of our applica-
tion of their test (LW) in Table 3 on the preceding page. With high p-values for each
year and for the entire sample, we are unable to reject the null hypothesis that the
Sharpe ratios of the iShares are equal. We used a slightly different definition of the
Sharpe ratio to Leung and Wong (2008) (see footnote 1), but it is unlikely that this
explains the discrepancy. Our findings agree with the finding of Gasbarro et al (2007),
who tested the equality of each possible pair of Sharpe ratios individually using the
methods derived in Jobson and Korkie (1981) and Memmel (2003) and found that the
null hypothesis of equality could not be rejected for any of them.

Secondly, it is interesting to note the similarity of the p-values given by the LW
and WYY-iid tests. Finally, application of the test derived in this section would reject
the null hypothesis at the 5% level for one year only. Although the p-values given by
the WYY-non-iid test are noticeably different to those of the other two tests, they are
not small enough for us to infer that the Sharpe ratios of the iShares are not the same.

5 CONCLUSIONS

The Sharpe ratio is an often used indicator of an asset’s worth as an investment.
Statistical procedures designed for the purpose of testing whether Sharpe ratios of
various funds or securities are equal are therefore of practical interest. Research has
been conducted in this area, but much of it has focussed on pairwise tests of equality
or has assumed that returns to be normal in nature (Jobson and Korkie 1981 and
Memmel 2003). Leung and Wong (2008) sought to apply the repeated measures
design (see Johnson and Wichern 2007, Chapter 6) and derive a hypothesis test for
the equality of multiple Sharpe ratios under the more general assumption that returns
are independently and identically distributed. However, their asymptotic distribution
of the vector of Sharpe ratio estimates only holds true when returns are normally
distributed and their application of their test to 17 iShares and Deposit Receipts uses
an old estimator for the Sharpe ratio.

This paper extends the work of Leung and Wong (2008) by finding the asymptotic
distribution of multiple Sharpe ratios firstly under the assumption of independently
and identically distributed returns and secondly under the more general assumption
that the returns are stationary and ergodic. It is shown that when returns are assumed
to be normal, the distribution boils down to that in Leung and Wong (2008). Using
these new hypothesis tests, we repeated the empirical example of Leung and Wong
(2008), testing for the equality of the Sharpe ratios of 18 securities. The results suggest
that the hypothesis that the Sharpe ratios are all the same cannot be rejected at the 1%
level, in contrast to the main finding of Leung and Wong (2008).
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It is hoped that our test may be of practical value to practitioners. Future versions
could include different HAC estimators for the limiting covariance matrix. Alterna-
tively, an alternate test under general assumptions could be derived via the time series
bootstrap approach developed in Ledoit and Wolf (2008).

APPENDIX A. CALCULATING THE ENTRIES OF COVARIANCE
MATRIX D˙DT

Firstly we show that our results under the iid assumption replicate the known asymp-
totic distribution when k D 1. The asymptotic variance in this case has been proven
by Bentkus et al (2007). In that paper, the authors derived the limiting distribution of
the noncentral t statistic Tn defined by

Tn D

p
n NX

Sn
;

where NX and Sn are the sample mean and sample standard deviation respectively
of a sequence X1; X2; : : : ; Xn of independent and identically distributed random
variables. We rewrite their Theorem 2.1 below.

Theorem A 1 Let X1; : : : ; Xn, NX , Sn, Tn be as described above. Let X be an
independent copy of X1. Assume EŒX4� < 1. Then, unless X is a specific linear
function of a standardized Bernoulli random variable, we have

��10

�
Tn �

p
n
�

�

�
D
�! N.0; 1/;

where
D
�! denotes convergence in distribution, � D EŒX�, � D VarŒX�, �3 is the

skewness of X , �4 is the (excess) kurtosis of X and finally

�20 D 1 �
��3

�
C
�2�4

4�2
C
�2

2�2
:

Referring to our paper, if k D 1, then matrix D is a 1 � 2 matrix:

D D

�
m2

.m2 � .m1/2/3=2
�m1

2.m2 � .m1/2/3=2

�
;

where mj D EŒXj �, the j th raw moment of the return of the single asset under
construction. Matrix ˙ , the asymptotic covariance for the mean vector . Om1 Om2 /T, is
given by

˙ D

 
m2 �m

2
1 m3 �m1m2

m3 �m1m2 m4 �m
2
2

!
:
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CalculatingD˙DT we find the asymptotic variance of the Sharpe ratio estimator cSR
to be

�21 WD .4m
3
2 �m

2
1m

2
2 � 4m1m2m3 Cm

2
1m4/=4�

3;

where � is the standard deviation of return X . As stated previously, Bentkus et al
(2007) prove the asymptotic variance of the estimator to be

�20 WD 1 �m1�3=� Cm
2
1�4=�

2 �m21=.4�
2/

where �3 and �4 are the skewness and kurtosis of return X . By expressing �3 and �4
in terms of raw moments m1, m2, m3 and m4 as

�3 D .2m
3
1 � 3m1m2 Cm3/=�

3;

�4 D .�3m
4
1 C 6m

2
1m2 � 4m1m3 Cm4/=�

4

and plugging these into Bentkus et al’s variance, we recover �21 . Thus, our asymptotic
variance D˙DT recovers existing results in the case when k D 1.

We shall now calculate the entries of our covariance matrixD˙DT explicitly and
see how they compare to the entries of the covariance matrix ˝ found in Leung and
Wong (2008). If D D ŒD1 W D2� then it follows that

D˙DT D
�
D1 D2

� A C

C T B

! 
D1

D2

!
D D1AD1 CD2C

TD1 CD1CD2 CD2BD2: (A.1)

MatrixA is the covariance matrix of the excess returns of each fund. Thus the .i; j /th
entry ofA, aij is Cov.Xit ; Xjt / WD �ij . Since the i th diagonal entry ofD1 is equal to
.�2i C�

2
i /=�

3
i where �i is the standard deviation of the excess return of fund i and�i

is its mean, simple calculations show that the diagonal terms of the matrix D1AD1
are given by

.D1AD1/i i D
�2i C �

2
i

�3i
�2i
�2i C �

2
i

�3i
D
.�2i C �

2
i /
2

�4i
(A.2)

and the off-diagonal terms are given by

.D1AD1/ij D
�2i C �

2
i

�3i
�ij
�2j C �

2
j

�3j

D
.�2i C �

2
i /.�

2
j C �

2
j /�ij

�3i �
3
j

D .D1AD1/j i : (A.3)

Matrix B is the covariance matrix for the squared excess returns of each fund. We
shall denote the .i; j /th entry of B , Cov.X2it ; X

2
jt /, by sij and the standard deviation
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of X2it by si . The i th diagonal entry of D2 is equal to ��i=2�3i , simple calculation
reveal that the diagonal entries of the matrix D2BD2 are given by

.D2BD2/i i D
��i

2�3i
s2i
�i

2�3i
D
�2i s

2
i

4�6i
(A.4)

and the off-diagonal terms are given by

.D2BD2/ij D
��i

2�3i
sij

�i

2�3i
D
�i�j sij

4�3i �
3
j

D .D2BD2/j i : (A.5)

Matrix C is the covariance matrix of the k excess returns against the k squared
excess returns. We shall denote the .i; j /th entry of C , Cov.Xit ; X2jt /, by qij and
Cov.Xit ; X2it / by q2i . Again, tedious calculations show that the diagonal entries of
D1CD2 are given by

.D1CD2/i i D
�2i C �

2
i

�3i
q2i
��i

2�3i
D
��i .�

2
i C �

2
i /q

2
i

2�6i
(A.6)

and the off-diagonal terms are

.D1CD2/ij D
�2i C �

2
i

�3i
qij
��j

2�3j
D
��j .�

2
i C �

2
i /qij

2�3i �
3
i

: (A.7)

Since D2C TD1 is the transpose of D1CD2, its entries are easily found and we find
the entries of the symmetric matrixD2C TD1CD1CD2 as follows: on the diagonal
we have

.D2C
TD1 CD1CD2/i i D

��i .�
2
i C �

2
i /q

2
i

�6i
(A.8)

and off the diagonal we have

.D2C
TD1 CD1CD2/ij D

��j .�
2
i C �

2
i /qij � �i .�

2
j C �

2
j /qj i

2�3i �
3
j

: (A.9)

Summing the matrixes together, we find that the diagonal entries of our asymptotic
covariance matrixes are

.D˙DT/i i D
4�2i .�

2
i C �

2
i /
2 C �2i s

2
i � 4�i .�

2
i C �

2
i /q

2
i

4�6i
(A.10)

and the nondiagonal entries are

.D˙DT/ij D
1

4�3i �
3
j

.4.�2i C �
2
i /.�

2
j C �

2
j /�ij C �i�j sij

� 2�j .�
2
i C �

2
i /qij � 2�i .�

2
j C �

2
j /qj i /: (A.11)
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Let us calculate D˙DT under the assumption that the excess daily returns for the
k funds follow a multivariate normal distribution, so that the daily excess return for
fund i has mean �i , standard deviation �i and covariance �ij with the daily excess
return of fund j . By the formula for the raw moments of the normal distribution, we
know that

s2i D 2�
4
i C 4�

2
i �
2
i and q2i D 2�i�

2
i : (A.12)

After plugging these values into .D˙DT/i i , we see that the diagonal entries of the
asymptotic covariance matrix when the excess returns are multivariate normal

.D˙DT/i i D 1C
�2i
2�2i
D 1C 1

2
SR2i : (A.13)

To find the off-diagonal terms in the normal case, we need to express sij and qij in
terms of the parameters of the multivariate normal distribution, �i ; �i and covariance
�ij . To that end, we use Isserlis’s theorem (Isserlis 1918), from which it follows that

EŒ.Xit��i /.Xjt��j /
2� D 0 and EŒ.Xit��i /

2.Xjt��j /
2� D �2i �

2
j C2.�ij /

2:

(A.14)
Expanding and rearranging the above we find two relations:

EŒXitX
2
jt � D 2�j�ij C �i�

2
j C �i�

2
j ; (A.15)

EŒX2itX
2
jt � D 2�iEŒXitX

2
jt �C 2�jEŒXjtX

2
it �

� 4�i�j�ij � �
2
i �

2
j � �

2
i �
2
j � 3�

2
i �

2
j C �

2
i �

2
j C 2.�ij /

2; (A.16)

and after yet more calculations we find

sij D 2.�ij /
2 C 4�i�j�ij and qij D 2�j�ij : (A.17)

Inserting these into the expression for the nondiagonal entries reveals

.D˙D/ij D �ij C
1
2

SRiSRj�
2
ij ; (A.18)

where �ij is the correlation between the excess returns of funds i and j . Thus
.D˙D/ij , when excess returns are assumed to be normally distributed, is equal
to the asymptotic covariance matrix found in Leung and Wong (2008).
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