14 research outputs found

    Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa.

    Get PDF
    Cryptococcal meningitis is a major cause of mortality throughout the developing world, yet little is known about the genetic markers underlying Cryptococcal virulence and patient outcome. We studied a cohort of 230 Cryptococcus neoformans (Cn) isolates from HIV-positive South African clinical trial patients with detailed clinical follow-up using multi-locus sequence typing and in vitro phenotypic virulence assays, correlating these data with clinical and fungal markers of disease in the patient. South African Cn displayed high levels of genetic diversity and locus variability compared to globally distributed types, and we identified 50 sequence types grouped within the main molecular types VNI, VNII and VNB, with 72% of isolates typed into one of seven 'high frequency' sequence types. Spatial analysis of patients' cryptococcal genotype was not shown to be clustered geographically, which might argue against recent local acquisition and in favour of reactivation of latent infection. Through comparison of MLST genotyping data with clinical parameters, we found a relationship between genetic lineage and clinical outcome, with patients infected with the VNB lineage having significantly worse survival (n=8, HR 3.35, CI 1.51-7.20, p=0.003), and this was maintained even after adjustment for known prognostic indicators and treatment regimen. Comparison of fungal genotype with in vitro phenotype (phagocytosis, laccase activity and CSF survival) performed on a subset of 89 isolates revealed evidence of lineage-associated virulence phenotype, with the VNII lineage displaying increased laccase activity (p=0.001) and ex vivo CSF survival (p=0.0001). These findings show that Cryptococcus neoformans is a phenotypically heterogeneous pathogen, and that lineage plays an important role in cryptococcal virulence during human infection. Furthermore, a detailed understanding of the genetic diversity in Southern Africa will support further investigation into how genetic diversity is structured across African environments, allowing assessment of the risks different ecotypes pose to infection

    Resistance of Asian Cryptococcus neoformans Serotype A Is Confined to Few Microsatellite Genotypes

    Get PDF
    Contains fulltext : 109375.pdf (publisher's version ) (Open Access)BACKGROUND: Cryptococcus neoformans is a pathogenic yeast that causes cryptococcosis, a life threatening disease. The prevalence of cryptococcosis in Asia has been rising after the onset of the AIDS epidemic and estimates indicate more than 120 cases per 1,000 HIV-infected individuals per year. Almost all cryptococcal disease cases in both immunocompromised and immunocompetent patients in Asia are caused by C. neoformans var. grubii. Epidemiological studies on C. neoformans in pan-Asia have not been reported. The present work studies the genetic diversity of the fungus by microsatellite typing and susceptibility analysis of approximately 500 isolates from seven Asian countries. METHODOLOGY/PRINCIPAL FINDINGS: Genetic diversity of Asian isolates of C. neoformans was determined using microsatellite analysis with nine microsatellite markers. The analysis revealed eight microsatellite complexes (MCs) which showed different distributions among geographically defined populations. A correlation between MCs and HIV-status was observed. Microsatellite complex 2 was mainly associated with isolates from HIV-negative patients, whereas MC8 was associated with those from HIV-positive patients. Most isolates were susceptible to amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole, but 17 (3.4%) and 10 (2%) were found to be resistant to 5-flucytosine and fluconazole, respectively. Importantly, five Indonesian isolates (approximately 12.5% from all Indonesian isolates investigated and 1% from the total studied isolates) were resistant to both antifungals. The majority of 5-flucytosine resistant isolates belonged to MC17. CONCLUSIONS: The findings showed a different distribution of genotypes of C. neoformans var. grubii isolates from various countries in Asia, as well as a correlation of the microsatellite genotypes with the original source of the strains and resistance to 5-flucytosine

    Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin.

    Get PDF
    Published versio

    Geographically structured populations of Cryptococcus neoformans Variety grubii in Asia correlate with HIV status and show a clonal population structure.

    Get PDF
    Contains fulltext : 125490.pdf (publisher's version ) (Open Access)Cryptococcosis is an important fungal disease in Asia with an estimated 140,000 new infections annually the majority of which occurs in patients suffering from HIV/AIDS. Cryptococcus neoformans variety grubii (serotype A) is the major causative agent of this disease. In the present study, multilocus sequence typing (MLST) using the ISHAM MLST consensus scheme for the C. neoformans/C. gattii species complex was used to analyse nucleotide polymorphisms among 476 isolates of this pathogen obtained from 8 Asian countries. Population genetic analysis showed that the Asian C. neoformans var. grubii population shows limited genetic diversity and demonstrates a largely clonal mode of reproduction when compared with the global MLST dataset. HIV-status, sequence types and geography were found to be confounded. However, a correlation between sequence types and isolates from HIV-negative patients was observed among the Asian isolates. Observations of high gene flow between the Middle Eastern and the Southeastern Asian populations suggest that immigrant workers in the Middle East were originally infected in Southeastern Asia

    Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii

    No full text
    This communication describes the consensus multi-locus typing scheme established by the Cryptococcal Working Group I (Genotyping of Cryptococcus neoformans and C. gattii) of the International Society for Human and Animal Mycology (ISHAM) using seven unlinked genetic loci for global strain genotyping. These genetic loci include the housekeeping genes CAP59,GPD1, LAC1, PLB1, SOD1, URA5 and the IGS1 region. Allele and sequence type information are accessible at http://www.mlst.net/
    corecore