229 research outputs found

    On the possibility of a terahertz light emitting diode based on a dressed quantum well

    Full text link
    We consider theoretically the realization of a tunable terahertz light emitting diode from a quantum well with dressed electrons placed in a highly doped p-n junction. In the considered system the strong resonant dressing field forms dynamic Stark gaps in the valence and conduction bands and the electric field inside the p-n junction makes the QW asymmetric. It is shown that the electrons transiting through the light induced Stark gaps in the conduction band emit photons with energy directly proportional to the dressing field. This scheme is tunable, compact, and shows a fair efficiency.Comment: 6 pages, 5 figure

    The Na(+)–H(+ )exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

    Get PDF
    INTRODUCTION: An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na(+)–H(+ )exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. METHODS: The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. RESULTS: We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. CONCLUSION: Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point

    A Novel Pathway of TEF Regulation Mediated by MicroRNA-125b Contributes to the Control of Actin Distribution and Cell Shape in Fibroblasts

    Get PDF
    BACKGROUND: Thyrotroph embryonic factor (TEF), a member of the PAR bZIP family of transcriptional regulators, has been involved in neurotransmitter homeostasis, amino acid metabolism, and regulation of apoptotic proteins. In spite of its relevance, nothing is known about the regulation of TEF. PRINCIPAL FINDINGS: p53-dependent genotoxic agents have been shown to be much more harmful for PAR bZIP-deficient mice as compared to wild type animals. Here we demonstrate that TEF expression is controlled by p53 through upregulation of microRNA-125b, as determined by both regulating the activity of p53 and transfecting cells with microRNA-125b precursors. We also describe a novel role for TEF in controlling actin distribution and cell shape in mouse fibroblasts. Lack of TEF is accompanied by dramatic increase of cell area and decrease of elongation (bipolarity) and dispersion (multipolarity). Staining of actin cytoskeleton also showed that TEF (-/-) cells are characterized by appearance of circumferential actin bundles and disappearance of straight fibers. Interestingly, transfection of TEF (-/-) fibroblasts with TEF induced a wild type-like phenotype. Consistent with our previous findings, transfection of wild type fibroblasts with miR-125b promoted a TEF (-/-)-like phenotype, and a similar but weaker effect was observed following exogenous expression of p53. CONCLUSIONS/SIGNIFICANCE: These findings provide the first evidence of TEF regulation, through a miR-125b-mediated pathway, and describes a novel role of TEF in the maintenance of cell shape in fibroblasts

    Effectiveness of YouRAction, an Intervention to Promote Adolescent Physical Activity Using Personal and Environmental Feedback: A Cluster RCT

    Get PDF
    Background: In this study the one and six months effects of the computer-tailored YouRAction (targeting individual level determinants) and YouRAction+e (targeting in addition perceived environmental determinants) on compliance with the moderate-to-vigorous physical activity (MVPA) guideline and weight status are examined. In addition the use and appreciation of both interventions are studied. Methods: A three-armed cluster randomized trial was conducted in 2009-2010 with measurements at baseline, one and six months post intervention. School classes were assigned to one of the study arms (YouRaction, YouRAction+e and Generic Information (GI) control group). MVPA was derived from self-reports at baseline, one and six months post intervention. Body Mass Index and waist circumference were measured at baseline and six months post intervention in a random sub-sample of the population. Use of the interventions was measured by webserver logs and appreciation by self-reports. Multilevel regression analyses were conducted to study the effects of the intervention against the GI control group. ANOVA's and chi-square tests were used to describe differences in use and appreciation between study arms. Results: There were no statistically significant intervention effects on compliance with the MVPA guideline, overweight or WC. Access to the full intervention was significantly lower for YouRAction (24.0%) and YouRAction+e (21.7%) compared to the GI (54.4%). Conclusion: This study could not demonstrate that the YouRAction and YouRAction+e interventions were effective in promoting MVPA or improve anthropometric outcomes among adolescents, compared to generic information. Insufficient use and exposure to the intervention content may be an explanation for the lack of effects

    Calling where it counts:Subordinate pied babblers target the audience of their vocal advertisements

    Get PDF
    For territorial group-living species, opportunities to reproduce on the natal territory can be limited by a number of factors including the availability of resources within a territory, access to unrelated individuals, and monopolies on reproduction by dominant group members. Individuals looking to reproduce are therefore faced with the options of either waiting for a breeding opportunity to arise in the natal territory, or searching for reproductive opportunities in non-natal groups. In the cooperatively breeding Southern pied babbler, Turdoides bicolor, most individuals who achieve reproductive success do so through taking up dominant breeding positions within non-natal groups. For subordinate pied babblers therefore, searching for breeding opportunities in non-natal groups is of primary importance as this represents the major route to reproductive success. However, prospecting (where individuals leave the group to search for reproductive opportunities within other groups) is costly and individuals rapidly lose weight when not part of a group. Here we demonstrate that subordinate pied babblers adopt an alternative strategy for mate attraction by vocal advertisement from within their natal territories. We show that subordinates focus their calling efforts on the edges of their territory, and specifically near boundaries with neighbouring groups that have potential breeding partners (unrelated individuals of the opposite sex). In contrast to prospecting, calling individuals showed no body mass loss associated with this behaviour, suggesting that calling from within the group may provide a 'cheap' advertisement strategy. Additionally, we show that subordinates use information regarding the composition of neighbouring groups to target the greatest number of potential mating partners

    Rgnef (p190RhoGEF) Knockout Inhibits RhoA Activity, Focal Adhesion Establishment, and Cell Motility Downstream of Integrins

    Get PDF
    Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility.Rgnef exon 24 floxed mice (Rgnef(flox)) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous Rgnef(WT/flox) (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnef(flox/flox) (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnef(flox/flox) (Cre+) (Rgnef-/-) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef-/- MEF phenotypes were rescued by epitope-tagged Rgnef re-expression.Rgnef-/- MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration

    Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries

    Get PDF
    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin concentrations and (2) cell spreading on 2-D micropatterned geometries. These works suggest (1) cell migration speed takes a maximum at a particular ligand density (~1140 molecules/µm2) and (2) that strong traction forces at the corners of the patterns may exist due to combined effects exerted by actin stress fibers (SFs). The integrative model of this paper successfully reproduced these experimental results and indicates the mechanism of cell migration and spreading. In this paper, the mechanical structure of the cell is modeled as having two elastic membranes: an outer cell membrane and an inner nuclear membrane. The two elastic membranes are connected by SFs, which are extended from focal adhesions on the cortical surface to the nuclear membrane. In addition, the model also includes ventral SFs bridging two focal adhesions on the cell surface. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bond to ligands on the ECM surface, activate SFs, and form focal adhesions. The relationship between the cell migration speed and fibronectin concentration agrees with existing experimental data for Chinese hamster ovary (CHO) cell migrations on fibronectin coated surfaces. In addition, the integrated model is validated by showing persistent high stress concentrations at sharp geometrically patterned edges. This model will be used as a predictive model to assist in design and data processing of upcoming microfluidic cell migration assays

    Staphylococcus aureus Induces Eosinophil Cell Death Mediated by α-hemolysin

    Get PDF
    Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain) cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions). Supernatants prepared from a strain deficient in the accessory gene regulator (agr) that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla), failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease

    Rac and Rho GTPases in cancer cell motility control

    Get PDF
    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination
    corecore