130 research outputs found

    In vitro metabolism of beclomethasone dipropionate, budesonide, ciclesonide, and fluticasone propionate in human lung precision-cut tissue slices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic effect of inhaled corticosteroids (ICS) may be affected by the metabolism of the drug in the target organ. We investigated the <it>in vitro </it>metabolism of beclomethasone dipropionate (BDP), budesonide (BUD), ciclesonide (CIC), and fluticasone propionate (FP) in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC).</p> <p>Methods</p> <p>Lung tissue slices were incubated with BDP, BUD, CIC, and FP (initial target concentration of 25 ÎŒM) for 2, 6, and 24 h. Cellular viability was assessed using adenosine 5'-triphosphate content and protein synthesis in lung slices. Metabolites and remaining parent compounds in the tissue samples were analyzed by HPLC with UV detection.</p> <p>Results</p> <p>BDP was hydrolyzed to the pharmacologically active metabolite beclomethasone-17-monopropionate (BMP) and, predominantly, to inactive beclomethasone (BOH). CIC was hydrolyzed initially to des-CIC with a slower rate compared to BDP. A distinctly smaller amount (approximately 10-fold less) of fatty acid esters were formed by BMP (and/or BOH) than by BUD or des-CIC. The highest relative amounts of fatty acid esters were detected for BUD. For FP, no metabolites were detected at any time point. The amount of drug-related material in lung tissue (based on initial concentrations) at 24 h was highest for CIC, followed by BUD and FP; the smallest amount was detected for BDP.</p> <p>Conclusion</p> <p>The <it>in vitro </it>metabolic pathways of the tested ICS in human lung tissue were differing. While FP was metabolically stable, the majority of BDP was converted to inactive polar metabolites. The formation of fatty acid conjugates was confirmed for BMP (and/or BOH), BUD, and des-CIC.</p

    Immediate response of myocardium to pressure overload includes transient regulation of genes associated with mitochondrial bioenergetics and calcium availability

    Get PDF
    Ventricular hypertrophy is one of the major myocardial responses to pressure overload (PO). Most studies on early myocardial response focus on the days or even weeks after induction of hypertrophic stimuli. Since mechanotransduction pathways are immediately activated in hearts undergoing increased work load, it is reasonable to infer that the myocardial gene program may be regulated in the first few hours. In the present study, we monitored the expression of some genes previously described in the context of myocardial hypertrophic growth by using the Northern blot technique, to estimate the mRNA content of selected genes in rat myocardium for the periods 1, 3, 6, 12 and 48 h after PO stimuli. Results revealed an immediate switch in the expression of genes encoding alpha and beta isoforms of myosin heavy chain, and up-regulation of the cardiac isoform of alpha actin. We also detected transitory gene regulation as the increase in mitochondrial cytochrome c oxidase 1 gene expression, parallel to down-regulation of genes encoding sarco(endo)plasmic reticulum Ca+2 ATPase and sodium-calcium exchanger. Taken together, these results indicate that initial myocardial responses to increased work load include alterations in the contractile properties of sarcomeres and transitory adjustment of mitochondrial bioenergetics and calcium availability

    Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells

    Get PDF
    ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum-plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P 2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum-plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P 2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P 2 plays a critical role in the targeting and function of ORP5/8 at the PM

    Epac inhibits migration and proliferation of human prostate carcinoma cells

    Get PDF
    BACKGROUND: It was recently found that cAMP mediates protein kinase A-independent effects through Epac proteins. The aim of this study was to investigate the role of Epac in migration and proliferation of prostate carcinoma cells. METHODS: The effect of Epac activation was determined by [(3)H] thymidine incorporation and scratch assays in PC-3 and DU 145 cells. Furthermore, cytoskeletal integrity was analysed by phalloidin staining. The participation of intracellular Epac effectors such as mitogen-activated protein (MAP) kinases, Rap1- and Rho-GTPases was determined by immunoblotting and pull-down assay. RESULTS: The specific Epac activator 8-pCPT-2'-O-Me-cAMP (8-pCPT) interfered with cytoskeletal integrity, reduced DNA synthesis, and migration. Although 8-pCPT activated Rap1, it inhibited MAP kinase signalling and RhoA activation. These findings were translated into functional effects such as inhibition of mitogenesis, cytoskeletal integrity, and migration. CONCLUSION: In human prostate carcinoma cells, Epac inhibits proliferative and migratory responses likely because of inhibition of MAP kinase and RhoA signalling pathways. Therefore, Epac might represent an attractive therapeutic target in the treatment of prostate cancer. British Journal of Cancer (2009) 101, 2038-2042. doi: 10.1038/sj.bjc.6605439 www.bjcancer.com Published online 17 November 2009 (C) 2009 Cancer Research U

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states

    In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

    Get PDF
    The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore