64 research outputs found

    Alloxan-Induced Diabetes Triggers the Development of Periodontal Disease in Rats

    Get PDF
    BACKGROUND: Periodontal disease in diabetic patients presents higher severity and prevalence; and increased severity of ligature-induced periodontal disease has been verified in diabetic rats. However, in absence of aggressive stimuli such as ligatures, the influence of diabetes on rat periodontal tissues is incompletely explored. The aim of this study was to evaluate the establishment and progression of periodontal diseases in rats only with diabetes induction. METHODOLOGY/PRINCIPAL FINDINGS: Diabetes was induced in Wistar rats (n = 25) by intravenous administration of alloxan (42 mg/kg) and were analyzed at 1, 3, 6, 9 and 12 months after diabetes induction. The hemimandibles were removed and submitted to radiographical and histopathological procedures. A significant reduction was observed in height of bone crest in diabetic animals at 3, 6, 9 and 12 months, which was associated with increased numbers of osteoclasts and inflammatory cells. The histopathological analyses of diabetic rats also showed a reduction in density of collagen fibers, fibroblasts and blood vessels. Severe caries were also detected in the diabetic group. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that diabetes induction triggers, or even co-induces the onset of alterations which are typical of periodontal diseases even in the absence of aggressive factors such as ligatures. Therefore, diabetes induction renders a previously resistant host into a susceptible phenotype, and hence diabetes can be considered a very important risk factor to the development of periodontal disease

    Mutations in the ELANE Gene are Associated with Development of Periodontitis in Patients with Severe Congenital Neutropenia

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Background Patients with severe congenital neutropenia (SCN) often develop periodontitis despite standard medical and dental care. In light of previous findings that mutations in the neutrophil elastase gene, ELANE, are associated with more severe neutropenic phenotypes, we hypothesized an association between the genotype of SCN and development of periodontitis. Methods Fourteen Swedish patients with SCN or cyclic neutropenia harboring different genetic backgrounds were recruited for periodontal examination. Peripheral blood, gingival crevicular fluid (GCF), and subgingival bacterial Thomas Modéer and Katrin Pütsep have contributed equally to the study

    Periodontitis and diabetes: a two-way relationship

    Get PDF
    Periodontitis is a common chronic inflammatory disease characterised by destruction of the supporting structures of the teeth (the periodontal ligament and alveolar bone). It is highly prevalent (severe periodontitis affects 10–15% of adults) and has multiple negative impacts on quality of life. Epidemiological data confirm that diabetes is a major risk factor for periodontitis; susceptibility to periodontitis is increased by approximately threefold in people with diabetes. There is a clear relationship between degree of hyperglycaemia and severity of periodontitis. The mechanisms that underpin the links between these two conditions are not completely understood, but involve aspects of immune functioning, neutrophil activity, and cytokine biology. There is emerging evidence to support the existence of a two-way relationship between diabetes and periodontitis, with diabetes increasing the risk for periodontitis, and periodontal inflammation negatively affecting glycaemic control. Incidences of macroalbuminuria and end-stage renal disease are increased twofold and threefold, respectively, in diabetic individuals who also have severe periodontitis compared to diabetic individuals without severe periodontitis. Furthermore, the risk of cardiorenal mortality (ischaemic heart disease and diabetic nephropathy combined) is three times higher in diabetic people with severe periodontitis than in diabetic people without severe periodontitis. Treatment of periodontitis is associated with HbA1c reductions of approximately 0.4%. Oral and periodontal health should be promoted as integral components of diabetes management

    Interactions of Adiponectin and Lipopolysaccharide from Porphyromonas gingivalis on Human Oral Epithelial Cells

    Get PDF
    BACKGROUND: Periodontitis is an inflammatory disease caused by pathogenic microorganisms, such as Porphyromonas gingivalis, and characterized by the destruction of the periodontium. Obese individuals have an increased risk for periodontitis and show decreased serum levels of adiponectin. This in-vitro study was established to examine whether adiponectin modulates critical effects of lipopolysaccharide (LPS) from P. gingivalis on oral epithelial cells (OECs). METHODOLOGY/PRINCIPAL FINDINGS: The presence of adiponectin and its receptors in human gingival tissue samples and OECs was analyzed by immunohistochemistry and PCR. Furthermore, OECs were treated with LPS and/or adiponectin for up to 72 h, and the gene expression and protein synthesis of pro- and anti-inflammatory mediators, matrix metalloproteinases (MMPs) and growth factors were analyzed by real-time PCR and ELISA. Additionally, cell proliferation, differentiation and in-vitro wound healing were studied. The nuclear translocation of NFκB was investigated by immunofluorescence. Gingival tissue sections showed a strong synthesis of adiponectin and its receptors in the epithelial layer. In cell cultures, LPS induced a significant up-regulation of interleukin (IL) 1β, IL6, IL8, MMP1 and MMP3. Adiponectin abrogated significantly the stimulatory effects of LPS on these molecules. Similarly, adiponectin inhibited significantly the LPS-induced decrease in cell viability and increase in cell proliferation and differentiation. Adiponectin led to a time-dependent induction of the anti-inflammatory mediators IL10 and heme oxygenase 1, and blocked the LPS-stimulated NFκB nuclear translocation. CONCLUSIONS/SIGNIFICANCE: Adiponectin may counteract critical actions of P. gingivalis on oral epithelial cells. Low levels of adiponectin, as observed in obese individuals, may increase the risk for periodontal inflammation and destruction

    Multiscale multifactorial approaches for engineering tendon substitutes

    Get PDF
    The physiology of tendons and the continuous strains experienced daily make tendons very prone to injury. Excessive and prolonged loading forces and aging also contribute to the onset and progression of tendon injuries, and conventional treatments have limited efficacy in restoring tendon biomechanics. Tissue engineering and regenerative medicine (TERM) approaches hold the promise to provide therapeutic solutions for injured or damaged tendons despite the challenging cues of tendon niche and the lack of tendon-specific factors to guide cellular responses and tackle regeneration. The roots of engineering tendon substitutes lay in multifactorial approaches from adequate stem cells sources and environmental stimuli to the construction of multiscale 3D scaffolding systems. To achieve such advanced tendon substitutes, incremental strategies have been pursued to more closely recreate the native tendon requirements providing structural as well as physical and chemical cues combined with biochemical and mechanical stimuli to instruct cell behavior in 3D architectures, pursuing mechanically competent constructs with adequate maturation before implantation.Authors acknowledge the project “Accelerating tissue engineering and personalized medicine discoveries by the integration of key enabling nanotechnologies, marinederived biomaterials and stem cells,” supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Authors acknowledge the H2020 Achilles Twinning Project No. 810850, and also the European Research Council CoG MagTendon No. 772817, and the FCT Project MagTT PTDC/CTM-CTM/ 29930/2017 (POCI-01-0145-FEDER-29930

    Influence of glycemic control on the levels of subgingival periodontal pathogens in patients with generalized chronic periodontitis and type 2 diabetes

    Full text link
    Abstract Objective This study evaluated the influence of glycemic control on the levels and frequency of subgingival periodontal pathogens in patients with type 2 diabetes mellitus (DM) and generalized chronic periodontitis (ChP). Material and Methods Fifty-six patients with generalized ChP and type 2 DM were assigned according to the levels of glycated hemoglobin (HbA1c) into one of the following groups: HbA1c<8% (n=28) or HbA1c&#8805;8% (n=28). Three subgingival biofilm samples from sites with probing depth (PD)<5 mm and three samples from sites with PD&#8805;5 mm were analyzed by quantitative Polymerase Chain Reaction (PCR) for the presence and levels of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Eubacterium nodatum, Parvimona micra, Fusobacterium nucleatum ssp. and Prevotella intermedia. Results The mean counts of F. nucleatum ssp. were statistically significantly higher in the sites with PD&#8805;5 mm of the HbA1c&#8805;8% group (p<0.05). Frequencies of detection of T. forsythia, E. nodatum, P. micra and F. nucleatum ssp. were all higher in the sites with PD&#8805;5 mm of the patients with HbA1c&#8805;8%, compared with those of patients with HbA1c<8% (p<0.05). Frequency of detection of P. intermedia was higher in the sites with PD<5 mm of the patients with HbA1c&#8805;8% than those of the patients with HbA1c<8% (p<0.05). Conclusions Poor glycemic control, as indicated by HbA1c&#8805;8%, is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of subjects with type 2 DM and ChP

    Diabetes en mondhygiëne

    No full text

    Periodontal disease and glycemic control in diabetics

    No full text
    corecore