764 research outputs found

    Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this record.We show that despite very similar crystallographic properties and work function values in bulk Fe and Cr, epitaxial films of these metals on Nb:SrTiO3(001) exhibit completely different heterojunction electronic properties. The Cr/SrTiO3 interface is ohmic, whereas Fe/SrTiO3 forms a Schottky barrier with a barrier height of 0.50 eV. This difference arises because of variations in interface chemistry. In contrast to Cr [Chambers, S. A., Adv. Mater. 2013, 25, 4001.], in-diffused Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation, which corroborate experimental results.This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #10122. The work described was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. S.P.H. was supported by the EPSRC Grant No.EP/I009973/1. Access to the HECToR high-performance computing facility was made available via S.P.H. membership of the U.K.’s HPC Materials Chemistry Consortium, which was funded by EPSRC (EP/F067496)

    Bait uptake by wild badgers and its implications for oral vaccination against tuberculosis

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record.Data Availability: All relevant data are within the paper and its Supporting Information files.The deployment of baits containing vaccines or toxins has been used successfully in the management of wildlife populations, including for disease control. Optimisation of deployment strategies seeks to maximise uptake by the targeted population whilst ensuring cost-effectiveness. Tuberculosis (TB) caused by infection with Mycobacterium bovis affects a broad range of mammalian hosts across the globe, including cattle, wildlife and humans. The control of TB in cattle in the UK and Republic of Ireland is hampered by persistent infection in European badgers (Meles meles). The present study aimed to determine the best strategy for maximising uptake of an oral vaccine by wild badgers, using a surrogate novel bait deployed at 40 badger social groups. Baits contained a blood-borne biomarker (Iophenoxic Acid, IPA) in order to measure consumption in badgers subsequently cage trapped at targeted setts. Evidence for the consumption of bait was found in 83% (199/240) of captured badgers. The probability that badgers had consumed at least one bait (IPA >10 μg ml-1) was significantly higher following deployment in spring than in summer. Lower uptake amongst social groups where more badgers were captured, suggested competition for baits. The probability of bait consumption was significantly higher at groups where main and outlier setts were provided with baits than at those where outliers were present but not baited. Badgers captured 10–14 days post bait feeding had significantly higher levels of bait uptake compared to those caught 24–28 days later. Uptake rates did not vary significantly in relation to badger age and whether bait was placed above ground or down setts. This study suggests that high levels of bait uptake can be achieved in wild badger populations and identifies factors influencing the potential success of different deployment strategies. The implications for the development of an oral badger vaccine are discussed.Natural Environment Research Council (NERC)Animal and Plant Health Agency (APHA

    On Holographic description of the Kerr-Newman-AdS-dS black holes

    Full text link
    In this paper, we study the holographic description of the generic four-dimensional non-extremal Kerr-Newman-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, there exists hidden conformal symmetry on the solution space. Similar to the Kerr case, this suggests that the Kerr-Newman-AdS-dS black hole is dual to a two-dimensional CFT with central charges cL=cR=6a(r++r)kc_L=c_R=\frac{6a(r_++r_\ast)}{k} and temperatures TL=k(r+2+r2+2a2)4πaΞ(r++r),TR=k(r+r)4πaΞT_L=\frac{k(r_+^2+r_\ast^2+2a^2)}{4\pi a\Xi(r_++r_\ast)}, T_R=\frac{k(r_+-r_\ast)}{4\pi a\Xi}. The macroscopic Bekenstein-Hawking entropy could be recovered from the microscopic counting in dual CFT via the Cardy formula. Using the Minkowski prescription, we compute the real-time correlators of the scalar, photon and graviton in near horizon geometry of near extremal Kerr-AdS-dS black hole. In all these cases, the retarded Green's function and the corresponding absorption cross section are in perfect match with CFT prediction. We further discuss the low-frequency scattering of a charged scalar by a Kerr-Newman-AdS-dS black hole and find the dual CFT description.Comment: 22 pages; minor corrections, conlusion unchanged, references added;published versio

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program

    Get PDF
    After a meal, the gastrointestinal tract exhibits a set of behaviours known as the fed state. A major feature of the fed state is a little understood motor pattern known as segmentation, which is essential for digestion and nutrient absorption. Segmentation manifests as rhythmic local constrictions that do not propagate along the intestine. In guinea-pig jejunum in vitro segmentation constrictions occur in short bursts together with other motor patterns in episodes of activity lasting 40–60 s and separated by quiescent episodes lasting 40–200 s. This activity is induced by luminal nutrients and abolished by blocking activity in the enteric nervous system (ENS). We investigated the enteric circuits that regulate segmentation focusing on a central feature of the ENS: a recurrent excitatory network of intrinsic sensory neurons (ISNs) which are characterized by prolonged after-hyperpolarizing potentials (AHPs) following their action potentials. We first examined the effects of depressing AHPs with blockers of the underlying channels (TRAM-34 and clotrimazole) on motor patterns induced in guinea-pig jejunum, in vitro, by luminal decanoic acid. Contractile episode durations increased markedly, but the frequency and number of constrictions within segmenting bursts and quiescent period durations were unaffected. We used these observations to develop a computational model of activity in ISNs, excitatory and inhibitory motor neurons and the muscle. The model predicted that: i) feedback to ISNs from contractions in the circular muscle is required to produce alternating activity and quiescence with the right durations; ii) transmission from ISNs to excitatory motor neurons is via fast excitatory synaptic potentials (EPSPs) and to inhibitory motor neurons via slow EPSPs. We conclude that two rhythm generators regulate segmentation: one drives contractions within segmentation bursts, the other the occurrence of bursts. The latter depends on AHPs in ISNs and feedback to these neurons from contraction of the circular muscle

    The Na(+)–H(+ )exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

    Get PDF
    INTRODUCTION: An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na(+)–H(+ )exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. METHODS: The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. RESULTS: We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. CONCLUSION: Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point

    Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP).</p> <p>Methods</p> <p>Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting.</p> <p>Results</p> <p>Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease.</p> <p>Conclusion</p> <p>The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.</p
    corecore