152 research outputs found

    An irradiated brown-dwarf companion to an accreting white dwarf

    Get PDF
    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor)1, 2. The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown3, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor4, 5. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are comparable

    Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Get PDF
    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable

    Cohort profile: design and methods in the eye and vision consortium of UK Biobank

    Get PDF
    PURPOSE: To describe the rationale, methods and research potential of eye and vision measures available in UK Biobank. PARTICIPANTS: UK Biobank is a large, multisite, prospective cohort study. Extensive lifestyle and health questionnaires, a range of physical measures and collection of biological specimens are collected. The scope of UK Biobank was extended midway through data collection to include assessments of other measures of health, including eyes and vision. The eye assessment at baseline included questionnaires detailing past ophthalmic and family history, measurement of visual acuity, refractive error and keratometry, intraocular pressure (IOP), corneal biomechanics, spectral domain optical coherence tomography (OCT) of the macula and a disc-macula fundus photograph. Since recruitment, UK Biobank has collected accelerometer data and begun multimodal imaging data (including brain, heart and abdominal MRI) in 100 000 participants. Dense genotypic data and a panel of 20 biochemistry measures are available, and linkage to medical health records for the full cohort has begun. FINDINGS TO DATE: A total of 502 665 people aged between 40 and 69 were recruited to participate in UK Biobank. Of these, 117 175 took part in baseline assessment of vision, IOP, refraction and keratometry. A subgroup of 67 321 underwent OCT and retinal photography. The introduction of eye and vision measures in UK Biobank was accompanied by intensive training, support and a data monitoring quality control process. FUTURE PLANS: UK Biobank is one of the largest prospective cohorts worldwide with extensive data on ophthalmic diseases and conditions. Data collection is an ongoing process and a repeat of the baseline assessment including the questionnaires, measurements and sample collection will be performed in subsets of 25 000 participants every 2-3 years. The depth and breadth of this dataset, coupled with its open-access policy, will create a powerful resource for all researchers to investigate the eye diseases in later life

    Periodontitis and Outer Retinal Thickness: a Cross-Sectional Analysis of the United Kingdom Biobank Cohort

    Get PDF
    \ua9 2024 American Academy of OphthalmologyPurpose: Periodontitis, a ubiquitous severe gum disease affecting the teeth and surrounding alveolar bone, can heighten systemic inflammation. We investigated the association between very severe periodontitis and early biomarkers of age-related macular degeneration (AMD), in individuals with no eye disease. Design: Cross-sectional analysis of the prospective community-based cohort United Kingdom (UK) Biobank. Participants: Sixty-seven thousand three hundred eleven UK residents aged 40 to 70 years recruited between 2006 and 2010 underwent retinal imaging. Methods: Macular-centered OCT images acquired at the baseline visit were segmented for retinal sublayer thicknesses. Very severe periodontitis was ascertained through a touchscreen questionnaire. Linear mixed effects regression modeled the association between very severe periodontitis and retinal sublayer thicknesses, adjusting for age, sex, ethnicity, socioeconomic status, alcohol consumption, smoking status, diabetes mellitus, hypertension, refractive error, and previous cataract surgery. Main Outcome Measures: Photoreceptor layer (PRL) and retinal pigment epithelium–Bruch\u27s membrane (RPE–BM) thicknesses. Results: Among 36 897 participants included in the analysis, 1571 (4.3%) reported very severe periodontitis. Affected individuals were older, lived in areas of greater socioeconomic deprivation, and were more likely to be hypertensive, diabetic, and current smokers (all P < 0.001). On average, those with very severe periodontitis were hyperopic (0.05 \ub1 2.27 diopters) while those unaffected were myopic (−0.29 \ub1 2.40 diopters, P < 0.001). Following adjusted analysis, very severe periodontitis was associated with thinner PRL (−0.55 ÎŒm, 95% confidence interval [CI], −0.97 to −0.12; P = 0.022) but there was no difference in RPE–BM thickness (0.00 ÎŒm, 95% CI, −0.12 to 0.13; P = 0.97). The association between PRL thickness and very severe periodontitis was modified by age (P < 0.001). Stratifying individuals by age, thinner PRL was seen among those aged 60 to 69 years with disease (−1.19 ÎŒm, 95% CI, −1.85 to −0.53; P < 0.001) but not among those aged < 60 years. Conclusions: Among those with no known eye disease, very severe periodontitis is statistically associated with a thinner PRL, consistent with incipient AMD. Optimizing oral hygiene may hold additional relevance for people at risk of degenerative retinal disease. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
    • 

    corecore