1,265 research outputs found

    The Atp-dependent Rna Helicase Hrpb Plays An Important Role In Motility And Biofilm Formation In Xanthomonas Citri Subsp. Citri

    Get PDF
    Background: RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. Results: The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (Δ;hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. Δ;hrpB also exhibited increased cell dispersion on solid medium plates. Δ;hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5′-cDNA Ends (5′RACE). Based on the results of fimA mRNA structure predictions, the fimA 5′ UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. Conclusions: Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas. © 2016 Granato et al.16

    Morfoanatomia e histoquímica da semente de sororoca (Phenakospermum guyannense (Rich.) Endl. - Strelitziaceae)

    Get PDF
    Phenakospermum guyannense, popularly known in the Amazon as sororoca, is usually found along rivers and in ombrophilous environments. The objective of this study was to describe the morpho-anatomy and histochemistry of mature seeds of P. guyannense collected at the Urubuí Waterfall, Presidente Figueiredo, Amazonas state, Brazil. Seed anatomy was studied using a light and a scanning electron microscopes (SEM). Histochemical tests were performed to identify phenolic compounds, starch, protein and lipids. The mature seed of P. guyannense is stenospermic, with a black seed coat composed of several layers of different cell types, with most containing phenolic compounds. The hilum is punctiform, surrounded by cells, which form the aryl. The endosperm is solid, formed by tetrahedral cells containing starch and protein. The embryo, which is cylindrical and located in the proximal region, is basal capitate, with cells containing lipids and proteins and is composed of a slightly dilated hypocotyl-radicle axis. The haustorium is flattened and located in the distal region

    Hypotensive effect and endothelium-dependent vascular action of leaves of Alpinia purpurata (Vieill) K. Schum

    Get PDF
    The aims of this study were to evaluate the chemical profile, vascular reactivity, and acute hypotensive effect (AHE) of the ethanolic extract of leaves of Alpinia purpurata (Vieill) K. Schum (EEAP). Its chemical profile was evaluated using HPLC-UV, ICP-OES, and colorimetric quantification of total flavonoids and polyphenols. The vascular reactivity of the extract was determined using the mesenteric bed isolated from WKY. AHE dose-response curves were obtained for both EEAP and inorganic material isolated from AP (IAP) in WKY and SHR animals. Cytotoxic and mutagenic safety levels were determined by the micronucleus test. Rutin-like flavonoids were quantified in the EEAP (1.8 ± 0.03%), and the total flavonoid and polyphenol ratios were 4.1 ± 1.8% and 5.1 ± 0.3%, respectively. We observed that the vasodilation action of EEAP was partially mediated by nitric oxide (·NO). The IAP showed the presence of calcium (137.76 ± 4.08 μg mg-1). The EEAP and IAP showed an AHE in WKY and SHR animals. EEAP did not have cytotoxic effects or cause chromosomic alterations. The AHE shown by EEAP could result from its endothelium-dependent vascular action. Rutin-like flavonoids, among other polyphenols, could contribute to these biological activities, and the calcium present in EEAP could act in a synergistic way
    • …
    corecore