596 research outputs found

    The Stochastic Dynamics of an Array of Atomic Force Microscopes in a Viscous Fluid

    Full text link
    We consider the stochastic dynamics of an array of two closely spaced atomic force microscope cantilevers in a viscous fluid for use as a possible biomolecule sensor. The cantilevers are not driven externally, as is common in applications of atomic force microscopy, and we explore the stochastic cantilever dynamics due to the constant buffeting of fluid particles by Brownian motion. The stochastic dynamics of two adjacent cantilevers are correlated due to long range effects of the viscous fluid. Using a recently proposed thermodynamic approach the hydrodynamic correlations are quantified for precise experimental conditions through deterministic numerical simulations. Results are presented for an array of two readily available atomic force microscope cantilevers. It is shown that the force on a cantilever due to the fluid correlations with an adjacent cantilever is more than 3 times smaller than the Brownian force on an individual cantilever. Our results indicate that measurements of the correlations in the displacement of an array of atomic force microscopes can detect piconewton forces with microsecond time resolution.Comment: 7 page article with 11 images submitted to the International Journal of Nonlinear Mechanic

    Emotion, Meaning, and Appraisal Theory

    Get PDF
    According to psychological emotion theories referred to as appraisal theory, emotions are caused by appraisals (evaluative judgments). Borrowing a term from Jan Smedslund, it is the contention of this article that psychological appraisal theory is “pseudoempirical” (i.e., misleadingly or incorrectly empirical). In the article I outline what makes some scientific psychology “pseudoempirical,” distinguish my view on this from Jan Smedslund’s, and then go on to show why paying heed to the ordinary meanings of emotion terms is relevant to psychology, and how appraisal theory is methodologically off the mark by employing experiments, questionnaires, and the like, to investigate what follows from the ordinary meanings of words. The overarching argument of the article is that the scientific research program of appraisal theory is fundamentally misguided and that a more philosophical approach is needed to address the kinds of questions it seeks to answer

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping, has been interpreted as evidence that the pseudogap must be due to precursor pairing. We suggest an alternative explanation, that the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the pseudogap could actually be due to any of a number of nesting instabilities, including charge or spin density waves or more exotic phases. We present a detailed analysis of this competition for one particular model: the pinned Balseiro-Falicov model of competing charge density wave and (s-wave) superconductivity. We show that most of the anomalous features of both tunneling and photoemission follow naturally from the model, including the smooth crossover, the general shape of the pseudogap phase diagram, the shrinking Fermi surface of the pseudogap phase, and the asymmetry of the tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1 and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be described in detail by this model, but we suggest a simple generalization to account for inhomogeneity, which does provide an adequate description. We show that it should be possible, with a combination of photoemission and tunneling, to demonstrate the extent of pinning of the Fermi level to the Van Hove singularity. A preliminary analysis of the data suggests pinning in the underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure

    Teaching of Energy Issues: A debate proposal for a GLobal Reorientation

    Get PDF
    The growing awareness of serious difficulties in the learning of energy issues has produced a great deal of research, most of which is focused on specific conceptual aspects. In our opinion, the difficulties pointed out in the literature are interrelated and connected to other aspects (conceptual as well as procedural and axiological), which are not sufficiently taken into account in previous research. This paper aims to carry out a global analysis in order to avoid the more limited approaches that deal only with individual aspects. From this global analysis we have outlined 24 propositions that are put forward for debate to lay the foundations for a profound reorientation of the teaching of energy topics in upper high school courses, in order to facilitate a better scientific understanding of these topics, avoid many students' misconceptions and enhance awareness of the current situation of planetary emergency

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Search for new particles in the two-jet decay channel with the D0 detector

    No full text
    We present the results of a search for the production of new particles decaying into two jets in pbarp collisions at sqrt{s} = 1.8 TeV, using the DZero 1992-1995 data set corresponding to 109 pb^-1. We exclude at the 95% confidence level the production of excited quarks (q*) with masses below 775 GeV/c^2, the most restictive limit to date. We also exclude standard-model-like W' (Z') bosons with masses between 300 and 800 GeV/c^2 (400 and 640 GeV/c^2). A W' boson with mass << 300 GeV/c^2 has been excluded by previous measurements, and our lower limit is therefore the most stringent to date

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Radiological assessment of natural radionuclide contents in soils from Omala, Kogi State, Nigeria.

    Get PDF
    High purity germanium detector (HPGe) was employed to assess radionuclide contents of 238U, 40K and 232Th in soils obtained from Omala, Kogi State, Nigeria. The activities measured vary from 9.0 to 82.2, 12.3 to 114.86 and below detector limit (BDL) and 349.0 Bq Kg-1 in 238U, 232Th and 40K respectively. Highest activities for the three radionuclides were consistently obtained from soil samples got from Igaliwu. The measured activities were engaged to estimate the absorbed dose, annual outdoor effective dose and gamma index. It was observed from the absorbed dose, annual equivalent dose and the gamma index estimated that soils from Igaliwu, Ijeke-ogene and Bagana were found to be higher than the recommended safe limit for normal background. This suggests that those living or using the soil for construction purposes are exposed to high radiation burden from natural radionuclides
    corecore