2,741 research outputs found

    Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes

    Get PDF
    Cataloged from PDF version of article.Scanning probe lithography(SPL) is capable of sub-30-nm-patterning resolution and nanometer-scale alignment registration, suggesting it might provide a solution to the semiconductor industry’s lithography challenges. However, SPL throughput is significantly lower than conventional lithography techniques. Low throughput most limits the widespread use of SPL for high resolution patterning applications. This article addresses the speed constraints for reliable patterning of organic resists. Electrons field emitted from a sharp probe tip are used to expose the resist. Finite tip-sample capacitance limits the bandwidth of current-controlled lithography in which the tip-sample voltage bias is varied to maintain a fixed emission current during exposure. We have introduced a capacitance compensation scheme to ensure continuous resist exposure of SAL601 polymerresist at scan speeds up to 1 mm/s. We also demonstrate parallel resist exposure with two tips, where the emission current from each tip is individually controlled. Simultaneous patterning with multiple tips may make SPL a viable technology for high resolution lithography. © 1999 American Institute of Physic

    Surface micromachined capacitive ultrasonic transducers

    Get PDF
    Cataloged from PDF version of article.The current state of a novel technology, surface microfabricated ultrasonic transducers, is reported. Experiments demonstrating both air and water transmission are presented. Air-coupled longitudinal wave transmission through aluminum is demonstrated, implying a 110 dB dynamic range for transducers at 2.3 MHz in air. Water transmission experiments from 1 to 20 MHz are performed, with a measured 60 dB SNR at 3 MHz. A theoretical model is proposed that agrees well with observed transducer behavior. Most significantly, the model is used to demonstrate that microfabricated ultrasonic transducers constitute an attractive alternative to piezoelectric transducers in many applications

    Conditional linearizability criteria for a system of third-order ordinary differential equations

    Full text link
    We provide linearizability criteria for a class of systems of third-order ordinary differential equations (ODEs) that is cubically semi-linear in the first derivative, by differentiating a system of second-order quadratically semi-linear ODEs and using the original system to replace the second derivative. The procedure developed splits into two cases, those where the coefficients are constant and those where they are variables. Both cases are discussed and examples given

    Understanding suicide attempts among gay men from their self-perceived causes

    Get PDF
    Gay men are at higher risk of suicidality. This paper describes the causes of suicide attempts as perceived by the men themselves and analyzes their impact on severity and recidivism. Mental health surveys conducted among gay men in Geneva, Switzerland, from two probability-based time-space samples in 2007 and 2011, were merged to yield a combined sample N = 762. Suicide ideation, plans, and attempts were assessed, and respondents who had ever attempted suicide answered open questions about perceived causes which were coded and categorized for analysis within the framework of cultural epidemiology. In all, 16.7% of the respondents reported a suicide attempt in their lifetime (59.5% of them with multiple attempts). At their latest attempt, over two thirds asserted intent to die, and half required medical assistance. There was a wide variety of perceived causes, with most individuals reporting multiple causes and many of the most common causes cited at both the first and most recent subsequent attempts. Social/inter-personal problems constitute the most prominent category. Problems with love/relationship and accepting one's homosexuality figure consistently among the top three causes. Whereas the former tend to be associated with weaker intent to die, the latter are associated with the strongest intent to die and reported at multiple attempts. Problems with family are among the most common perceived causes at first attempt but not at the most recent subsequent attempt. Nevertheless, they tend to be related to the strongest intent to die and the greatest medical severity of all the perceived causes. Ten percent of men attempting suicide cited depression as a cause. Although it tended to be associated with weaker intent to die, depression was most likely to be reported at multiple attempts. Respondent-driven assessment yielded both common and idiosyncratic causes of suicide and their distinct effects. Some of these perceived causes are not prominent in the curren literature, yet they have important implications for understanding risk and preventing suicide among gay men

    Mesoscopic Phase Coherence in a Quantum Spin Fluid

    Full text link
    Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain Y2BaNiO5, a quantum spin fluid where no classical, static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nm, almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nm. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner

    High-Field Electrical Transport in Single-Wall Carbon Nanotubes

    Full text link
    Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure

    Current carrying capacity of carbon nanotubes

    Full text link
    The current carrying capacity of ballistic electrons in carbon nanotubes that are coupled to ideal contacts is analyzed. At small applied voltages, where electrons are injected only into crossing subbands, the differential conductance is 4e2/h4e^2/h. At applied voltages larger than ΔENC/2e\Delta E_{NC}/2e (ΔENC\Delta E_{NC} is the energy level spacing of first non crossing subbands), electrons are injected into non crossing subbands. The contribution of these electrons to current is determined by the competing processes of Bragg reflection and Zener type inter subband tunneling. In small diameter nanotubes, Bragg reflection dominates, and the maximum differential conductance is comparable to 4e2/h4e^2/h. Inter subband Zener tunneling can be non negligible as the nanotube diameter increases because ΔENC\Delta E_{NC} is inversely proportional to the diameter. As a result, with increasing nanotube diameter, the differential conductance becomes larger than 4e2/h4e^2/h, though not comparable to the large number of subbands into which electrons are injected from the contacts. These results may be relevant to recent experiments in large diameter multi-wall nanotubes that observed conductances larger than 4e2/h4e^2/h.Comment: 12 pages, 4 figure

    Disorder, pseudospins, and backscattering in carbon nanotubes

    Full text link
    We address the effects of disorder on the conducting properties of metal and semiconducting carbon nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in doped semiconducting tubes. We show that this result can be understood theoretically if the disorder potential is long-ranged. The effects of a pseudospin index that describes the internal sublattice structure of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This conclusion is supported by tight-binding calculations.Comment: four page

    Integration of through-wafer interconnects with a two-dimensional cantilever array

    Get PDF
    Cataloged from PDF version of article.High-density through-wafer interconnects are incorporated in a two-dimensional (2D) micromachined cantilever array. The design addresses alignment and density issues associated with 2D arrays. Each cantilever has piezoresistive deflection sensors and high-aspect ratio silicon tips. The fabrication process and array operation are described. The integration of cantilevers, tips, and interconnects enables operation of a high-density 2D scanning probe array over large areas. (C) 2000 Elsevier Science S.A. All rights reserved
    corecore