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Abstract

Ž .High-density through-wafer interconnects are incorporated in a two-dimensional 2D micromachined cantilever array. The design
addresses alignment and density issues associated with 2D arrays. Each cantilever has piezoresistive deflection sensors and high-aspect
ratio silicon tips. The fabrication process and array operation are described. The integration of cantilevers, tips, and interconnects enables
operation of a high-density 2D scanning probe array over large areas. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The ability to fabricate small through-wafer electrical
interconnections has broad applications for integrated cir-
cuits and micromachined devices. Semiconductor micro-
fabrication generally places sensors and integrated circuits
on only one side of a silicon wafer. With bulk wafer
etching techniques, connections between both sides of the
wafer can be made, enabling more complicated and com-
pact structures. Some of the many examples include inter-

Ž .connects in integrated circuits, three-dimensional 3D
Ž .packaging e.g., stacking , and fabrication of 3D electrical

w xand MEMS structures 1–6 . Small through-wafer inter-
connects particularly benefit dense arrays of microfabri-
cated sensors, such as ultrasound transducer arrays for
imaging and diode arrays for detecting charged particles
and X-rays, as they minimize nonsensing area and thus

w xenhance performance 7,8 . In this work, we focus on a

) Corresponding author. Tel.: q1-650-723-2279; fax: q1-650-725-
7509.

Ž .E-mail address: emc@stanford.edu E.M. Chow .

Ž .versatile and useful sensor format: two-dimensional 2D
arrays of force sensing cantilevers.

Scanning probe devices, such as an atomic force micro-
Ž .scope AFM , take advantage of high spatial resolution and

high force resolution to make significant contributions in a
variety of fields. The commercially available AFM can
typically measure piconewtons of force, with angstrom
vertical resolution and nanometer horizontal resolution. Its
ability to operate in water and at atmospheric pressures,

Ž .unlike scanning electron microscopes SEM , has led to
numerous biological imaging and force measurement ap-

w xplications 9,10 . In lithography, arguably the most critical
technology for the integrated circuit industry, scanning

˚probes have demonstrated 300-A resolution, with a wider
w xprocess latitude than electron beam techniques 11 .

Metal-oxide semiconductor transistors with 100-nm gate
lengths have been demonstrated using scanning probe

w xlithography 12 . Scanning probe devices using localized
heating can achieve 400 Gbitsrin.2 data storage densities;
an order of magnitude greater than the paramagnetic limit

w xwhich ultimately limits magnetic data storage 13 . While
the sensitivity of these techniques is most impressive,
throughput and sensing area are hindered by their reliance
on serial scanning. The ability to fabricate large, densely
packed, 2D arrays of sensors would address this problem,
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as arrays increase signal throughput without sacrificing the
spatial sensitivity of the individual sensor.

One important issue for 2D arrays of scanning probes is
Ž .alignment. Linear 1D cantilever probe arrays have been

demonstrated for cantilevers operating at a nominal 158

w xangle relative to the sample surface 14,15 . This arrange-
ment allows access to wire bonds on the tip side of the
wafer without interfering with tip to sample alignment
Ž .Fig. 1a . Two-dimensional arrays of AFM cantilevers
require parallel planar alignment to the sample, so that all

Žcantilevers are simultaneously in contact for scanning Fig.
.1b . In previous 2D cantilever arrays, bond pads with the

associated wiring were on the same side of the wafer as
w xthe tips 16,17 . This method only works for samples with

smaller areas than the cantilever chip. When the sample
region is larger than the cantilever array die, wire bonds on
the tip side of the wafer would meet the surface before the
tips, preventing the ability to scan.

Another challenge for cantilever arrays is the packing
density. Increasing the probe density will minimize the
imaging time. The electrical wiring for large numbers of
devices consumes valuable space, particularly when multi-
ple electrical leads per device are required. When imaging
with piezoresistive scanning probes, each cantilever has a
deflection lead and a ground connection. High-speed imag-
ing with integrated force feedback additionally requires an
individual actuator and its corresponding electrical connec-

w xtions 18 . Similarly, lithography with multiple cantilevers
in parallel requires an additional electrical connection for

w xeach cantilever to control the exposure dose 19 . Compli-
cated electrical routing on the sensor side of the wafer can
be moved to the backside of the wafer by using through-

Ž .wafer vias TWVs . Wet etching has been used for
through-wafer interconnects, but these techniques leave a

2 w xhole in one side of the wafer about 0.5 mm in area 3–6 .
For dense array applications, this limits ultimate packing

Ž .Fig. 1. a Linear arrays are operated at an angle with respect to the
Ž .sample. b Two-dimensional arrays must be operated parallel to the

sample. Through-wafer interconnects permit wire bonding from the back-
side of the wafer, facilitating alignment.

density and layout flexibility. Furthermore, lithography
over such 3D topography typically requires electrode-
posited resist or shadow masking, which complicate pro-
cess integration.

In this work, these problems are addressed through the
integration of small TWV with a 2D cantilever array. Our
previously demonstrated TWVs are used to connect the
deflection sensing piezoresistors on the tip side of the

w xwafer with the bond pads on the backside 20 . With the
wire bonds on the backside of the wafer, the array is
versatile, and can be used to scan samples with a wide
range of sizes, similar to commercial AFMs. In addition,

Ž .highly anisotropic high-density plasma HDP etching has
enabled these TWVs to be 30 mm on a side, an order of
magnitude smaller than typically achieved with wet etch-

w xing 21 . Conventional spin-on resist is used to pattern the
TWV thin films, facilitating process integration. The small
TWV, combined with an HDP release of the cantilevers,
significantly increases the ultimate packing density, and
thus the cantilever array throughput.

2. Fabrication

Ž .The fabrication process involves three major steps: 1
Ž .high-aspect ratio silicon tips, 2 through-wafer intercon-

Ž .nects to the piezoresistive sensors, and 3 anisotropic dry
release of cantilevers.

The starting substrate is a silicon-on-insulator wafer
with a 20-mm silicon device layer and 2-mm buried oxide
on a 400-mm silicon handle wafer. High-aspect ratio tips
are formed in the device layer silicon in a multistep etch

w xprocess, similar to previous work 22–25 . First an isotropic
Ž .plasma etch SF is used to undercut a silicon dioxide tip6

Ž .mask. Then an anisotropic plasma etch Cl rHBr is used2

to control the height of the tip, allowing the flexibility to
vary the cantilever thickness. The oxide mask is then

Ž .removed in buffered hydrofluoric acid BHF . The tips are
Ž .sharpened through another isotropic plasma etch SF6
w xfollowed by a long oxidation to sharpen the tips 26 .

Another BHF dip is used to strip the oxide. To form the
piezoresistors, a resist pattern is used to mask boron
implantations at 40 keV with a dose of 5=1014 cm-2.
These parameters place the majority of the dopants near
the surface of the cantilever, increasing deflection sensitiv-

w xity 27 . To insure ohmic contacts to the piezoresistors, a
heavy implant at 80 keV and 5=1015 cm-2 is performed
at the base of the piezoresistors where the contact pads

Ž .will be located Fig. 2a .
The TWV is made by anisotropically etching 30 mm

square vias through the entire thickness of the wafer using
Ž . w xan HDP etch SF 21 . The first part of this etch is done6

from the front of the wafer, through the silicon device
layer. The buried oxide is then etched in BHF. The
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Fig. 2. Process flow for a two-dimensional array of piezoresistive can-
Ž .tilevers with integrated through-wafer electrical interconnects. a A

high-aspect ratio tip is etched and implants are performed for the piezore-
Ž . Ž . Ž .sistors and their contacts. b The through-wafer via TWV is etched. c

Silicon oxide, silicon nitride, and polysilicon are conformally deposited
and then patterned over the piezoresistor contacts. Tungsten is deposited
as the metal layer through the TWV, followed by aluminum on the back

Ž . Ž .for wire bonding. d The frontside and backside metal are patterned. e
The cantilever is released from the back with a deep silicon and oxide

Ž .etch. f Resist is removed for the final release of the cantilever.

majority of the TWV is etched from the back of the wafer
Ž .4 h etch with another resist mask, which is aligned to the

Ž .front side using a backside aligner Fig. 2b . Etching from
the front side first followed by the backside serves to

Ž .simplify buried oxide removal easier to wet from the top
Žand simplifies tip protection tips do not experience a long

.plasma etch . Hereafter, simple spin-on resist masks were
used repeatedly to protect the bottom-side of the wafer,
facilitating double-sided wafer processing.

Multiple thin films are then deposited to form the
through-wafer interconnect. A half-micron of low-pressure

Ž .chemical vapor deposition LPCVD oxide is deposited to
serve as a future etch-stop for protecting the silicon tips.

Ž .Conformal LPCVD silicon nitride 1 mm is used for via
Želectrical isolation, followed by LPCVD polysilicon 1

.mm for tungsten adhesion. Contacts to the piezoresistors
Ž .are patterned and CVD tungsten 1 mm is deposited.

Aluminum is sputtered on the backside to aid wire bond-
ing, as tungsten does not adhere well to aluminum or gold

Ž .bond wires Fig. 2c . Unlike our previous through-wafer
interconnect work which used electrodeposited resist, pat-
terning of the front and back metal is done with conven-

Ž . w xtional spin-on thick photoresist Shipley AZ4620 2,20 . If
Ž .spun-on thick 15–20 mm and baked resist-side down in a

Ž .convection oven 908C for 1 h , the resist is able to harden

Ž .Fig. 3. SEM micrographs of completed cantilever arrays. a Backside
Ž .view, looking through to cantilevers on the front. b An individual

Ž . Ž .piezoresistive cantilever, c silicon tip, and d through-wafer intercon-
nect.
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Ž .Fig. 4. Parallel image of a grating 10 mm pitch, 0.2 mm step with a 2=4 array of piezoresistive cantilevers. The cantilever pitch is 250 mm horizontally,
and 1500 mm vertically. Each cantilever sweeps out a 170=70 mm2 area by scanning at 560 mmrs. The entire image is scanned in 140 s. A scratch on
the grating is visible across the top left two cantilevers.

as a membrane over the 30 mm squares. With this resist
mask the aluminum is wet etched, and the tungsten,
polysilicon, and nitride layers on the tip side and wire
bonding side of the wafer are patterned in SF plasma6

etches. The etch stops on the oxide, preserving the sharp
Ž .tip, and the oxide is removed in BHF Fig. 2d .

After completing the TWV, the cantilevers are released
Ž .with a backside etch Fig. 2e , again using an HDP etch

w xwhich stops on the buried oxide 20 . The anisotropy of
this technique allows for small release regions and thus
high cantilever density. The buried oxide is then removed
in BHF. The resist that protects the cantilevers is stripped

Ž .in oxygen plasma for the final release Fig. 2f .

3. Results

Completed cantilevers were 10 mm thick, 200–400 mm
Ž .long, and have 7-mm tall tips Fig. 3 . An off-chip Wheat-

stone bridge circuit followed by a 105 gain stage was used
to monitor changes in each cantilever’s piezoresistance.
Deflection sensitivities of 10-7 nm-1 to 5=10-7 nm-1 and

˚ Žminimum detectable deflections of 10-20 A 10 Hz–1 kHz
.bandwidth were measured on suspended cantilevers. The

designed resistance was 1 kV for each piezoresistor plus
its interconnect. While this was achieved on test wafers
Ž .not SOI , device wafers had overall resistances of 3–13
kV. This is attributed to over-etching of the buried oxide
during the TWV etch, which lead to poor metal deposition
in this region.

To demonstrate functionality, a 2=4 cantilever array
Žwas used to image an arbitrary location on a grating Fig.

.4 . After the bridge gains and offsets were individually
tuned for each cantilever, the cantilever array was aligned
to the sample. Tip-height uniformity was adequate to
enable manual alignment of the chip to the sample. Each
cantilever scanned 170=70 mm2, while their signals were
simultaneously collected by a computer; the entire scan
was acquired in 140 s. The fact that the sample was much

Ž 2 2 .larger than the cantilever array 1 cm vs. 0.5 mm
demonstrates the utility of TWV integration.

The fabrication process is scalable to larger and denser
arrays, and can be integrated with other unique sensor
topologies. Chip-scale alignment for passive cantilever
arrays is possible, as demonstrated here and elsewhere, but
integrated actuators for each cantilever are desirable for
enabling parallel non-contact imaging and for aiding in

w xalignment 16–18 . Though specific parameters depend on
the application, it is reasonable to consider arrays of
thousands of probes scanning centimeter distances in tens
of seconds. Increasing throughput through parallelism is
particularly attractive for scanning probes, because it al-
lows larger sample regions and shorter acquisition times,
while maintaining functional versatility and force sensitiv-
ity.

4. Conclusion

Through-wafer interconnects have been integrated with
a two-dimensional array of piezoresistive cantilevers.
Scanning of an arbitrary location on a sample is demon-
strated by imaging with 2=4 array. The successful inte-
gration of TWVs with micromachined sensors will have
broad applications elsewhere in the MEMS community.

Acknowledgements

Ž .This work is supported by DARPArMEMS F306602 ,
Ž . Ž .JSEP N00014-91-J-1050 NSF CAREER ECS-9502046 ,

and an NSF Graduate Fellowship. Device fabrication made
use of the National Nanofabrication Users Network facili-

Ž .ties funded by NSF ECS-9731294 .

References

w x1 T.R. Anthony, Forming electrical interconnections through semicon-
Ž .ductor wafers, J. Appl. Phys. 52 1981 5340–5349.

w x2 H.T. Soh, C.P. Yue, A.M. McCarthy, C. Ryu, T.H. Lee, C.F. Quate,
Ž .Ultra-low resistance, through-wafer via TWV technology and its



( )E.M. Chow et al.rSensors and Actuators 83 2000 118–123122

applications in three dimensional structures in silicon, in: Interna-
tional Conference on Solid State Devices and Materials, Hiroshima,
Japan, Sept. 7–10,1998, pp. 284–285.

w x3 S. Linder, H. Baltes, F. Gnaedinger, E. Doering, Fabrication tech-
nology for wafer through-hole interconnections and three-dimen-
sional stack of chips and wafers, in: Proc. IEEE Micro Electro
Mech. Systems, Oiso, Japan,1994, pp. 349–354.

w x4 M. Heschel, J.F. Kuhmann, S. Boustra, Stacking technology for a
space constrained microsystem, J. Intell. Mater. Syst. Struct. 9
Ž .1998 749–754.

w x5 C. Christensen, P. Kersten, S. Henke, S. Bouwstra, Wafer through-
hole interconnections with high vertical wiring densities, IEEE

Ž .Trans. Compon., Packag., Manuf. Technol., Part A 19 1996 516–
522.

w x6 G.J. Burger, E.J.T. Smulders, J.W. Berenschot, T.S.J. Lammerink,
J.H.J. Fluitman, S. Imai, High-resolution shadow-mask patterning in
deep holes and its application to an electrical wafer feed-through,

Ž .Sens. Actuators, A 54 1996 669–673.
w x7 C. Kenney, S. Parker, J. Segal, C. Storment, Silicon detectors with

3D electrode arrays: fabrication and initial test results, IEEE Trans.
Ž .Nucl. Sci. 46 1999 1224–1236.

w x8 X.C. Jin, S. Calmes, C.H. Cheng, F.L. Degertekin, B.T. Khuri-
Yakub, Micromachined capacitive ultrasonic immersion transducer
array, in: Tech. Digest, 10th Int. Conf. Solid-State Sensors and

Ž .Actuators Transducers ’99 , Sendai, Japan, June 7–10,1999, pp.
1500–1503.

w x9 Z. Shao, J. Mou, D.M. Czajkowsky, J. Yang, J.Y. Yuan, Biological
atomic force microscopy: what is achieved and what is needed, Adv.

Ž .Phys. 45 1996 1–86.
w x10 H.G. Hansma, J.H. Hoh, Biomolecular imaging with the atomic

Ž .force microscope, Annu. Rev. Biophys. Biomol. Struct. 23 1994
115–139.

w x11 K. Wilder, C.F. Quate, B. Singh, D.F. Kyser, Electron beam and
scanning probe lithography: a comparison, J. Vac. Sci. Technol., B

Ž .16 1998 3864–3873.
w x12 H.T. Soh, K. Wilder, A. Atalar, C.F. Quate, Fabrication of 100 nm

pMOSFETs with hybrid AFMrSTM lithography, in: Tech. Digest
Proceedings Symposium on VLSI Technology, Kyoto, Japan 10–
12,1997, pp. 129–130.

w x13 G. Binnig, M. Despont, U. Drechsler, W. Haberle, M. Lutwyche, P.
Vettiger, H.J. Mamin, B.W. Chui, T.W. Kenny, Ultrahigh-density
atomic force microscopy data storage with erase capability, Appl.

Ž .Phys. Lett. 74 1999 1329–1331.
w x14 S.C. Minne, P. Fleuckiger, H.T. Soh, C.F. Quate, Atomic force

microscope lithography using amorphous silicon as a resist and
Ž .advances in parallel operation, J. Vac. Sci. Technol., B 13 1995

1380–1385.
w x15 S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar,

C.F. Quate, Centimeter scale atomic force microscope imaging and
Ž .lithography, Appl. Phys. Lett. 73 1998 1742–1744.

w x16 M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W.
Haeberle, H. Rohrer, H. Rothuizen, P. Vettiger, Microfabrication
and parallel operation of 5=5 2D AFM cantilever arrays for data
storage and imaging, in: Proc. IEEE Micro Electro Mech. Systems,
Heidelberg, Germany, Jan. 25–29,1998, pp. 8–11.

w x17 M. Despont, J. Brugger, U. Drechsler, U. Durig, W. Haberle, M.
Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, H. Rohrer, G.
Binnig, P. Vettiger, VLSI-NEMS chip for AFM data storage, in:
12th IEEE International Conference on Micro Electro Mechanical

Ž .Systems MEMS ’99 , Orlando, FL, USA, January 17–21,1999, pp.
564–569.

w x18 S.C. Minne, S.R. Manalis, C.F. Quate, Parallel atomic force mi-
croscopy using cantilever with integrated piezoresistive sensors and

Ž .integrated piezoelectric actuators, Appl. Phys. Lett. 67 1995 3918–
3920.

w x19 K. Wilder, C.F. Quate, Scanning probe lithography using a can-
tilever with integrated transistor for on-chip control of exposing

current, in: 1999 Electron, Ion, and Photon Beams and Nanofabrica-
Ž .tion EIPBN Conference, Marco Island, FL, USA, June 1–4,1999.

w x20 E.M. Chow, H.T. Soh, A. Partridge, J.A. Harley, S.A. Alibeik, J.P.
McVittie, A. McCarthy, T.W. Kenny, C.F. Quate, Fabrication of
high-density cantilever arrays and through-wafer interconnects, in:
Solid-State Sensor and Actuator Workshop, Hilton Head, SC, USA,
June 8–11,1998, pp. 220–224.

w x21 Multiplex Inductively Coupled Plasma System, Surface Technology
Systems, Newport, UK.

w x22 A. Boisen, O. Hansen, S. Bouwstra, AFM probes with directly
Ž .fabricated tips, J. Micromech. Microeng. 6 1996 58–62.

w x23 J. Brugger, R.A. Buser, N.F. de Rooij, Silicon cantilevers and tips
Ž .for scanning force microscopy, Sens. Actuators, A 34 1992 193–

200.
w x24 I.W. Rangelow, Sharp silicon tips for AFM and field emission,

Ž .Microelectron. Eng. 23 1994 369–372.
w x25 J. Itoh, Y. Tohma, S. Kanemaru, K. Shimizu, Fabrication of an

ultrasharp microprobe with a silicon-on-insulator wafer for scanning
Ž .force microscopy, J. Vac. Sci. Technol., B 13 1995 331–334.

w x26 R.B. Marcus, T.S. Ravi, T. Gmitter, K. Chin, D. Liu, W.J. Orvis,
D.R. Ciarlo, C.E. Hunt, J. Trujillo, Formation of silicon tips with

Ž .-1 nm radius, Appl. Phys. Lett. 56 1990 237–238.
w x27 J.A. Harley, T.W. Kenny, Design and process optimization of

piezoresistive cantilevers, J. Microelectromech. Syst., Sept. 1999,
accepted for publication in June, 2000 issue.

Biographies

Eugene M. Chow received the BS degree in engineering physics from the
University of California, Berkeley in 1995 and MS degree in electrical
engineering from Stanford University in 1997. He is currently pursuing
the PhD at Stanford University. His research interests are in fabrication,
application and design of microfabricated sensors, with particular interest
in scanning probes.

( )Hyongsok Tom Soh received the BS with distinction with a double
major in mechanical engineering and materials science, and the MEng
degree in electrical engineering from Cornell University in 1992 and
1993, respectively. He received the MS and the PhD in electrical engi-
neering from Stanford University in 1995 and 1999, respectively. Cur-
rently he is a research associate at Stanford University and his research
interests include scanning probe lithography, nanometer-scale electron
devices, and MEMS.

Hae-Chang Lee received the BS in electrical engineering in 1998 from
Stanford University, where he is currently a PhD student. His main
research interests are in MEMS and circuit design. He is a member of
Tau Beta Pi and Phi Betta Kappa.

Jesse D. Adams received the BS degree in mechanical engineering from
the University of Nevada Reno in 1996 and the MS in mechanical
engineering from Stanford University in 1997. He is currently pursuing
the PhD at Stanford University. His research focuses on parallel atomic
force microscopy.

Stephen C. Minne received a BS with highest honors from the University
of Illinois U-C in 1992, and an MS and a PhD form Stanford University
in 1994 and 1996, respectively. He currently holds positions at Stanford
University and at NanoDevices. His research interests include automation
of massively parallel MEMS systems, real time nanometer scale biologi-
cal imaging and advanced lithography.

Goksen Yaralioglu received the BS, MS, and PhD degrees from Bilkent
University, Ankara, Turkey, in 1992, 1994 and 1998, respectively, all in
electrical engineering. He is currently a research associate at Stanford
University. His professional interests are acoustic microscopy, non-de-

Ž .structive material characterization, atomic force microscopy AFM , in-
creasing the throughput of AFM systems and noise analysis of mechani-
cal structures.



( )E.M. Chow et al.rSensors and Actuators 83 2000 118–123 123

Abdullah Atalar received the PhD from Stanford University in 1978. He
is currently a professor of electrical and electronics engineering at Bilkent
University, Ankara, Turkey. His research interests are in micromachined
sensors, atomic force microscopy, analog and digital integrated circuit
design and simulation of large circuits.

CalÕin F. Quate obtained the BS degree from University of Utah in 1943
and the PhD from Stanford University in 1950. He is currently a research
professor of electrical engineering at Stanford University. His research
interests are in scanning probe microscopes and MEMS.

Thomas W. Kenny received the BS degree in physics from the University
of Minnesota, in 1983 and the MS and PhD degrees in physics from the
University of California, Berkeley, in 1987 and 1989, respectively. He
has worked at the Jet Propulsion Laboratory, where his research focused
on the development of electron-tunneling-based high-resolution microsen-
sors. Since 1994, he has been Assistant Professor and Terman Fellow
with the Mechanical Engineering Department at Stanford University, and
directs research in a variety of areas such as advanced tunneling sensors,
cantilever beam force sensors, microfluidics, and novel fabrication tech-
niques for micromechanical structures.


