1,920 research outputs found

    Cryptocurrency Research in the Field of Information Systems: A Literature Review and its Implications for Sharing Economy Research

    Get PDF
    Cryptocurrency has been widely adopted as an asset for investment with the rise of numerous well-known cryptocurrency exchanges. Practitioners and enthusiasts have begun to promote cryptocurrency as a means of payment in the sharing economy. This new trend has also received attention from academia, especially among information systems (IS) scholars. Thus, the purpose of this paper is to consolidate knowledge about cryptocurrency in the field of IS through a systematic literature review and provide insights for researchers to seek opportunities for cryptocurrency research in the context of the sharing economy

    Spot diagnosis: An ominous rash in a newborn

    Get PDF
    Purpura fulminans (PF) is an ominous cutaneous condition usually associated with meningococcemia. PF in the newborn is rarely reported. We report the case of a female preterm infant with extensive PF due to group B streptococcus (GBS) septicemia. She developed multi-organ system failure despite neonatal intensive care support and succumbed 9 days later. GBS, sensitive to penicillin, was isolated from the blood cultures of the mother and the infant. Invasive early GBS infection is common in the newborn and is empirically treated with prompt institution of intravenous antibiotics. PF associated with GBS is a rare cutaneous sign that must not be missed. Mortality remains high despite aggressive treatment and ICU support

    The management of children born with cleft lip and palate

    Get PDF
    Although cleft lip and palate is a single anomaly, its consequences affect several systems and functions of the child as well as the social and psychological problems that impact on the child and parents. Therefore, the services of a team of specialists are required to care for a child with cleft lip and palate. Empathic counselling and help with feeding ensures that the infant can cope with the primary surgery to the lip and palate. If speech problems occur, a nasendoscopy can be performed to determine the nature of the speech abnormality and to assess the appropriateness of additional palatal surgery. Nasendoscopy may also be required later because osteotomy surgery can compromise speech. Alignment of the teeth may be necessary before bone grafting of the residual alveolar cleft, and is always needed prior to and after orthognathic surgery. The development and regular practice of a range of clinical skills is essential if the team of specialists are to plan and deliver the appropriate high quality care needed by children and adolescents with cleft lip and palate.published_or_final_versio

    The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba

    Get PDF
    Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) ”m along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3

    Functional connexin35 increased in the myopic chicken retina.

    Get PDF
    Our previous research showed that increased phosphorylation of connexin (Cx)36 indicated extended  coupling of AII amacrine cells (ACs) in the rod-dominant mouse myopic retina. This research will determine whether phosphorylation at serine 276 of Cx35-containing gap junctions increased in the myopic chicken, whose retina is cone-dominant. Refractive errors and ocular biometric dimensions of 7-days-old chickens were determined following 12 h and 7 days induction of myopia by a -10D lens. The expression pattern and size of Cx35-positive plaques were examined in the early (12 h) and compensated stages (7 days) of lens-induced myopia (LIM). At the same time, phosphorylation at serine 276 (functional assay) of Cx35 in strata 5 (S5) of the inner plexiform layer was investigated. The axial length of the 7 days LIM eyes was significantly longer than that of non-LIM controls (P < 0.05). Anti-phospho-Ser276 (Ser276-P)-labeled plaques were significantly increased in LIM retinas at both 12 h and 7 days. The density of Ser276-P of Cx35 was observed to increase after 12 h LIM. In the meanwhile, the areas of existing Cx35 plaques did not change. As there was more phosphorylation of connexin35 at Ser276 at both the early and late stages (12 h) and 7 days of LIM chicken retinal activity, the coupling with ACs could be increased in myopia development of the cone-dominated chicken retina

    The Seasonal Metabolic Activity Cycle of Antarctic Krill (Euphausia superba): Evidence for a Role of Photoperiod in the Regulation of Endogenous Rhythmicity

    Get PDF
    Antarctic krill (Euphausia superba), a key species in the Southern Ocean, reduce their metabolism as an energy saving mechanism in response to the harsh environmental conditions during the Antarctic winter. Although the adaptive significance of this seasonal metabolic shift seems obvious, the driving factors are still unclear. In particular, it is debated whether the seasonal metabolic cycle is driven by changes in food availability, or if an endogenous timing system entrained by photoperiod might be involved. In this study, we used different long-term photoperiodic simulations to examine the influence of light regime and endogenous rhythmicity on the regulation of krill seasonal metabolic cycle. Krill showed a seasonal cycle of growth characterized by null-to-negative growth rates during autumn-winter and positive growth rates during spring-summer, which was manifested also in constant darkness, indicating strong endogenous regulation. Similar endogenous cycles were observed for the activity of the key-metabolic enzyme malate dehydrogenase (MDH) and for the expression levels of a selection of metabolic-related genes, with higher values in spring-summer and lower values in autumn-winter. On the other side, a seasonal cycle of oxygen consumption was observed only when krill were exposed to simulated seasonal changes in photoperiod, indicating that light-related cues might play a major role in the regulation of krill oxygen consumption. The influence of light-regime on oxygen consumption was minimal during winter, when light-phase duration was below 8 h, and it was maximal during summer, when light-phase duration was above 16 h. Significant upregulation of the krill clock genes clk, cry2, and tim1, as well as of the circadian-related opsins rh1a and rrh, was observed after light-phase duration had started to decrease in early autumn, suggesting the presence of a signaling cascade linking specific seasonal changes in the Antarctic light regime with clock gene activity and the regulation of krill metabolic dormancy over the winter

    The Seasonal Metabolic Activity Cycle of Antarctic Krill (Euphausia superba): Evidence for a Role of Photoperiod in the Regulation of Endogenous Rhythmicity

    Get PDF
    Antarctic krill (Euphausia superba), a key species in the Southern Ocean, reduce their metabolism as an energy saving mechanism in response to the harsh environmental conditions during the Antarctic winter. Although the adaptive significance of this seasonal metabolic shift seems obvious, the driving factors are still unclear. In particular, it is debated whether the seasonal metabolic cycle is driven by changes in food availability, or if an endogenous timing system entrained by photoperiod might be involved. In this study, we used different long-term photoperiodic simulations to examine the influence of light regime and endogenous rhythmicity on the regulation of krill seasonal metabolic cycle. Krill showed a seasonal cycle of growth characterized by null-to-negative growth rates during autumn-winter and positive growth rates during spring-summer, which was manifested also in constant darkness, indicating strong endogenous regulation. Similar endogenous cycles were observed for the activity of the key-metabolic enzyme malate dehydrogenase (MDH) and for the expression levels of a selection of metabolic-related genes, with higher values in spring-summer and lower values in autumn-winter. On the other side, a seasonal cycle of oxygen consumption was observed only when krill were exposed to simulated seasonal changes in photoperiod, indicating that light-related cues might play a major role in the regulation of krill oxygen consumption. The influence of light-regime on oxygen consumption was minimal during winter, when light-phase duration was below 8 h, and it was maximal during summer, when light-phase duration was above 16 h. Significant upregulation of the krill clock genes clk, cry2, and tim1, as well as of the circadian-related opsins rh1a and rrh, was observed after light-phase duration had started to decrease in early autumn, suggesting the presence of a signaling cascade linking specific seasonal changes in the Antarctic light regime with clock gene activity and the regulation of krill metabolic dormancy over the winter
    • 

    corecore