2,096 research outputs found

    IFN-gamma is associated with risk of Schistosoma japonicum infection in China.

    No full text
    Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection

    A global assessment of the impact of climate change on water scarcity

    Get PDF
    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C

    Spectral plots and the representation and interpretation of biological data

    Full text link
    It is basic question in biology and other fields to identify the char- acteristic properties that on one hand are shared by structures from a particular realm, like gene regulation, protein-protein interaction or neu- ral networks or foodwebs, and that on the other hand distinguish them from other structures. We introduce and apply a general method, based on the spectrum of the normalized graph Laplacian, that yields repre- sentations, the spectral plots, that allow us to find and visualize such properties systematically. We present such visualizations for a wide range of biological networks and compare them with those for networks derived from theoretical schemes. The differences that we find are quite striking and suggest that the search for universal properties of biological networks should be complemented by an understanding of more specific features of biological organization principles at different scales.Comment: 15 pages, 7 figure

    The effect of self-focusing on laser space-debris cleaning

    Get PDF
    A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed

    Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2008 The American Society of Gene Therapy.Due to its early onset and severe prognosis, cystic fibrosis (CF) has been suggested as a candidate disease for in utero gene therapy. In 1997, a study was published claiming that to how transient prenatal expression of CF transmembrane conductance regulator (CFTR) from an in utero –injected adenovirus vector could achieve permanent reversal of the CF intestinal pathology in adult CF knockout mice, despite the loss of CFTR transgene expression by birth. This would imply that the underlying cause of CF is a prenatal defect for which lifelong cure can be achieved by transient prenatal expression of CFTR. Despite criticism at the time of publication, no independent verification of this contentious finding has been published so far. This is vital for the development of future therapeutic strategies as it may determine whether CF gene therapy should be performed prenatally or postnatally. We therefore reinvestigated this finding with an identical adenoviral vector and a knockout CF mouse line (CftrtmlCam) with a completely inbred genetic background to eliminate any effects due to genetic variation. After delivery of the CFTR-expressing adenovirus to the fetal mouse, both vector DNA and transgenic CFTR expression were detected in treated animals postpartum but statistically no significant difference in survival was observed between the Cftr–/– mice treated with the CFTR-adenovirus and those treated with the control vector.Sport Aiding Medical Research for Kids, the Cystic Fibrosis Trust, and the Katharine Dormandy Trust

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication

    Get PDF
    Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
    corecore