312 research outputs found

    Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

    Get PDF
    BACKGROUND: Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria

    SERPINB5 and AKAP12 -- Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early metastasis and infiltration are survival limiting characteristics of pancreatic ductal adenocarcinoma (PDAC). Thus, PDAC is likely to harbor alterations in metastasis suppressor genes that may provide novel diagnostic and therapeutic opportunities. This study investigates a panel of metastasis suppressor genes in correlation to PDAC phenotype and examines promoter methylation for regulatory influence on metastasis suppressor gene expression and for its potential as a diagnostic tool.</p> <p>Methods</p> <p>Metastatic and invasive potential of 16 PDAC cell lines were quantified in an orthotopic mouse model and mRNA expression of 11 metastasis suppressor genes determined by quantitative RT-PCR. Analysis for promoter methylation was performed using methylation specific PCR and bisulfite sequencing PCR. Protein expression was determined by Western blot.</p> <p>Results</p> <p>In general, higher metastasis suppressor gene mRNA expression was not consistent with less aggressive phenotypes of PDAC. Instead, mRNA overexpression of several metastasis suppressor genes was found in PDAC cell lines vs. normal pancreatic RNA. Of the investigated metastasis suppressor genes, only higher <it>AKAP12 </it>mRNA expression was correlated with decreased metastasis (P < 0.05) and invasion scores (P < 0.01) while higher <it>SERPINB5 </it>mRNA expression was correlated with increased metastasis scores (P < 0.05). Both genes' promoters showed methylation, but only increased <it>SERPINB5 </it>methylation was associated with loss of mRNA and protein expression (P < 0.05). <it>SERPINB5 </it>methylation was also directly correlated to decreased metastasis scores (P < 0.05).</p> <p>Conclusions</p> <p><it>AKAP12 </it>mRNA expression was correlated to attenuated invasive and metastatic potential and may be associated with less aggressive phenotypes of PDAC while no such evidence was obtained for the remaining metastasis suppressor genes. Increased <it>SERPINB5 </it>mRNA expression was correlated to increased metastasis and mRNA expression was regulated by methylation. Thus, <it>SERPINB5 </it>methylation was directly correlated to metastasis scores and may provide a diagnostic tool for PDAC.</p

    IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence

    Get PDF
    IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10-/-mice led to faster control of lytic viral replication, bu

    RNA activation of haploinsufficient Foxg1 gene in murine neocortex

    Get PDF
    More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo

    Frequencies of board meetings on various topics and corporate governance: evidence from China

    Get PDF
    This paper examines the relationship between number of topic-specific board meetings and quality of corporate governance. The quality of corporate governance is estimated by CEO turnover-performance and compensation-performance sensitivities. Information about topic-specific meetings is collected from the reports of independent directors of Chinese listed firms. We find that more frequent discussions of growth strategies related to the use of IPO proceeds, investment and acquisitions increase CEO compensation-performance sensitivity. By contrast, more discussions about the nomination of directors and top management are likely to reduce the sensitivities of both CEO turnover and compensation to performance. Our findings shed light on what makes boards efficient, and how board monitoring of assorted decisions modifies the relationship between CEO interests and firm performance

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    Get PDF
    BACKGROUND: Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS: We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE: Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications
    corecore