83 research outputs found

    Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.)

    Get PDF
    Single feature polymorphisms (SFPs) are microarray-based molecular markers that are detected by hybridization of DNA or cRNA to oligonucleotide probes. With an objective to identify the potential polymorphic markers for drought tolerance in pigeonpea [Cajanus cajan (L.) Millspaugh], an important legume crop for the semi-arid tropics but deficient in genomic resources, Affymetrix Genome Arrays of soybean (Glycine max), a closely related species of pigeonpea were used on cRNA of six parental genotypes of three mapping populations of pigeonpea segregating for agronomic traits like drought tolerance and pod borer (Helicoverpa armigiera) resistance. By using robustified projection pursuit method on 15 pair-wise comparisons for the six parental genotypes, 5,692 SFPs were identified. Number of SFPs varied from 780 (ICPL 8755 × ICPL 227) to 854 (ICPL 151 × ICPL 87) per parental combination of the mapping populations. Randomly selected 179 SFPs were used for validation by Sanger sequencing and good quality sequence data were obtained for 99 genes of which 75 genes showed sequence polymorphisms. While associating the sequence polymorphisms with SFPs detected, true positives were observed for 52.6% SFPs detected. In terms of parental combinations of the mapping populations, occurrence of true positives was 34.48% for ICPL 151 × ICPL 87, 41.86% for ICPL 8755 × ICPL 227, and 81.58% for ICP 28 × ICPW 94. In addition, a set of 139 candidate genes that may be associated with drought tolerance has been identified based on gene ontology analysis of the homologous pigeonpea genes to the soybean genes that detected SFPs between the parents of the mapping populations segregating for drought tolerance

    Identification and characterization of seed-specific transcription factors regulating anthocyanin biosynthesis in black rice

    Get PDF
    Black rice is rich in anthocyanin and is expected to have more healthful dietary potential than white rice. We assessed expression of anthocyanin in black rice cultivars using a newly designed 135 K Oryza sativa microarray. A total of 12,673 genes exhibited greater than 2.0-fold up- or down-regulation in comparisons between three rice cultivars and three seed developmental stages. The 137 transcription factor genes found to be associated with production of anthocyanin pigment were classified into 10 groups. In addition, 17 unknown and hypothetical genes were identified from comparisons between the rice cultivars. Finally, 15 out of the 17 candidate genes were verified by RT-PCR analysis. Among the genes, nine were up-regulated and six exhibited down-regulation. These genes likely play either a regulatory role in anthocyanin biosynthesis or are related to anthocyanin metabolism during flavonoid biosynthesis. While these genes require further validation, the results here underline the potential use of the new microarray and provide valuable insight into anthocyanin pigment production in rice

    Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells

    Get PDF
    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-β1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF

    Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors

    Get PDF
    Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities

    Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors

    Get PDF
    BACKGROUND: Alpha-Synuclein (alpha-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the alpha-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of alpha-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. RESULTS: In the present study, we analysed the ability of cytosolic factors to regulate alpha-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant alpha-syn. To characterize cytosolic factor(s) that modulate alpha-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate alpha-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T alpha-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance alpha-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P alpha-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. CONCLUSION: These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant alpha-syn membrane binding, and could represent potential targets to influence alpha-syn solubility in brain

    Circadian Clocks in Mouse and Human CD4+ T Cells

    Get PDF
    Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses

    HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the <it>high mobility group A1 </it>(<it>HMGA1</it>) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. <it>HMGA1 </it>functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, <it>HMGA1 </it>is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from <it>HMGA1a </it>transgenic mice at different stages in tumorigenesis.</p> <p>Results</p> <p>RNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors.</p> <p>Conclusions</p> <p>We found that <it>HMGA1 </it>induces inflammatory pathways early in lymphoid tumorigenesis and pathways involved in stem cells, cell cycle progression, and cancer in established tumors. <it>HMGA1 </it>also dyregulates genes and pathways involved in stem cells, cellular development and hematopoiesis at both early and late stages of tumorigenesis. These results provide insight into <it>HMGA1 </it>function during tumor development and point to cellular pathways that could serve as therapeutic targets in lymphoid and other human cancers with aberrant <it>HMGA1 </it>expression.</p

    Short Telomeres Compromise β-Cell Signaling and Survival

    Get PDF
    The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca2+ influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16INK4a. Specifically, we identified gene expression changes in pathways which are essential for Ca2+-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis

    Tryptophan Scanning Analysis of the Membrane Domain of CTR-Copper Transporters

    Get PDF
    Membrane proteins of the CTR family mediate cellular copper uptake in all eukaryotic cells and have been shown to participate in uptake of platinum-based anticancer drugs. Despite their importance for life and the clinical treatment of malignancies, directed biochemical studies of CTR proteins have been difficult because high-resolution structural information is missing. Building on our recent 7Å structure of the human copper transporter hCTR1, we present the results of an extensive tryptophan-scanning analysis of hCTR1 and its distant relative, yeast CTR3. The comparative analysis supports our previous assignment of the transmembrane helices and shows that most functionally and structurally important residues are clustered around the threefold axis of CTR trimers or engage in helix packing interactions. The scan also identified residues that may play roles in interactions between CTR trimers and suggested that the first transmembrane helix serves as an adaptor that allows evolutionarily diverse CTRs to adopt the same overall structure. Together with previous biochemical and biophysical data, the results of the tryptophan scan are consistent with a mechanistic model in which copper transport occurs along the center of the trimer

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p
    corecore