2,528 research outputs found

    Spike sorting for large, dense electrode arrays

    Get PDF
    Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%

    EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    Get PDF
    We present multiline CO observations of the complex submillimeter galaxy SMMJ00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1–0), CO(3–2), and CO(5–4) mapping, SMMJ00266+1708 appears to have two distinct components separated by ∼ 500 kms−1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMMJ00266+1708 is an on going merger with a mass ratio of (7.8±4.0)/ sin2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component’s properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modelling of the red-shifted component, although motivated by a CO(1–0) size larger than the CO(3–2) size, is inconclusive. SMMJ00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼ 1′′ resolution of our observations could not have distinguished between the two components due to their separation (0.′′73 ± 0.′′06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys

    Excitation Conditions in the Multi-component Submillimeter Galaxy SMM J00266+1708

    Get PDF
    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z=2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ~500 km/s that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8+/-4.0)/sin^2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the red-shifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ~1" resolution of our observations could not have distinguished between the two components due to their separation (0.73" +/- 0.06"), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys

    Ciprofloxacin during upper respiratory tract infections to reduce Pseudomonas aeruginosa infection in paediatric cystic fibrosis: a pilot study.

    Get PDF
    OBJECTIVES: Acute viral respiratory illnesses are associated with acquisition of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients. This study aimed to pilot a protocol for a randomized controlled trial to determine whether oral antipseudomonal antibiotics used at the onset of such episodes might delay onset of infection with this organism. METHODS: A total of 41 children with CF aged 2-14 years, without chronic Pseudomonas infection, were randomized to receive ciprofloxacin (n = 28) or placebo (n = 13) at the onset of acute viral respiratory infections on an intention to treat basis, during a study period of up to 32 months. RESULTS: There were no unexpected adverse events believed related to the use of the study medication. The rate of withdrawal from the study was low (approximately 7%) and did not differ between groups. Randomization was effective and acceptable to participants. Primary and secondary outcome measures all favoured active treatment, but there were no significant between group differences. The median rate of Pseudomonas isolates was 0/patient/year (interquartile range 0-0.38) in both the active and placebo groups. Kaplan-Meier survival curves showed no significant difference in time to first Pseudomonas isolate between groups. CONCLUSIONS: This study demonstrated the clinical feasibility of using oral ciprofloxacin in CF patients at times of viral infection. Within this sample size, no significant association was found between active treatment and decreased growth of Pseudomonas in follow-up microbiological samples. A definitive study would require at least 320 children to demonstrate significant differences in the rate of pseudomonal isolates

    Simulating Reionization: Character and Observability

    Get PDF
    In recent years there has been considerable progress in our understanding of the nature and properties of the reionization process. In particular, the numerical simulations of this epoch have made a qualitative leap forward, reaching sufficiently large scales to derive the characteristic scales of the reionization process and thus allowing for realistic observational predictions. Our group has recently performed the first such large-scale radiative transfer simulations of reionization, run on top of state-of-the-art simulations of early structure formation. This allowed us to make the first realistic observational predictions about the Epoch of Reionization based on detailed radiative transfer and structure formation simulations. We discuss the basic features of reionization derived from our simulations and some recent results on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe, July 2007, AIP Conference Serie

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
    • …
    corecore