2,810 research outputs found
EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708
We present multiline CO observations of the complex submillimeter galaxy SMMJ00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1–0), CO(3–2), and CO(5–4) mapping,
SMMJ00266+1708 appears to have two distinct components separated by ∼ 500 kms−1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical
conditions in their molecular gas may not be alike. We tentatively infer that SMMJ00266+1708 is an on going merger with a mass ratio of (7.8±4.0)/ sin2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component’s properties are consistent with a
single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modelling of the red-shifted component, although motivated by a CO(1–0) size larger than the CO(3–2) size, is inconclusive. SMMJ00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼ 1′′ resolution of our observations could not have distinguished between the two components due to their separation (0.′′73 ± 0.′′06),
illustrating that the additional velocity information provided by spectral line studies is important for
addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys
Ciprofloxacin during upper respiratory tract infections to reduce Pseudomonas aeruginosa infection in paediatric cystic fibrosis: a pilot study.
OBJECTIVES: Acute viral respiratory illnesses are associated with acquisition of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients. This study aimed to pilot a protocol for a randomized controlled trial to determine whether oral antipseudomonal antibiotics used at the onset of such episodes might delay onset of infection with this organism. METHODS: A total of 41 children with CF aged 2-14 years, without chronic Pseudomonas infection, were randomized to receive ciprofloxacin (n = 28) or placebo (n = 13) at the onset of acute viral respiratory infections on an intention to treat basis, during a study period of up to 32 months. RESULTS: There were no unexpected adverse events believed related to the use of the study medication. The rate of withdrawal from the study was low (approximately 7%) and did not differ between groups. Randomization was effective and acceptable to participants. Primary and secondary outcome measures all favoured active treatment, but there were no significant between group differences. The median rate of Pseudomonas isolates was 0/patient/year (interquartile range 0-0.38) in both the active and placebo groups. Kaplan-Meier survival curves showed no significant difference in time to first Pseudomonas isolate between groups. CONCLUSIONS: This study demonstrated the clinical feasibility of using oral ciprofloxacin in CF patients at times of viral infection. Within this sample size, no significant association was found between active treatment and decreased growth of Pseudomonas in follow-up microbiological samples. A definitive study would require at least 320 children to demonstrate significant differences in the rate of pseudomonal isolates
Spike sorting for large, dense electrode arrays
Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%
Excitation Conditions in the Multi-component Submillimeter Galaxy SMM J00266+1708
We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z=2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ~500 km/s that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8+/-4.0)/sin^2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the red-shifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ~1" resolution of our observations could not have distinguished between the two components due to their separation (0.73" +/- 0.06"), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys
Simulating Reionization: Character and Observability
In recent years there has been considerable progress in our understanding of
the nature and properties of the reionization process. In particular, the
numerical simulations of this epoch have made a qualitative leap forward,
reaching sufficiently large scales to derive the characteristic scales of the
reionization process and thus allowing for realistic observational predictions.
Our group has recently performed the first such large-scale radiative transfer
simulations of reionization, run on top of state-of-the-art simulations of
early structure formation. This allowed us to make the first realistic
observational predictions about the Epoch of Reionization based on detailed
radiative transfer and structure formation simulations. We discuss the basic
features of reionization derived from our simulations and some recent results
on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe,
July 2007, AIP Conference Serie
A measure of individual role in collective dynamics
Identifying key players in collective dynamics remains a challenge in several
research fields, from the efficient dissemination of ideas to drug target
discovery in biomedical problems. The difficulty lies at several levels: how to
single out the role of individual elements in such intermingled systems, or
which is the best way to quantify their importance. Centrality measures
describe a node's importance by its position in a network. The key issue
obviated is that the contribution of a node to the collective behavior is not
uniquely determined by the structure of the system but it is a result of the
interplay between dynamics and network structure. We show that dynamical
influence measures explicitly how strongly a node's dynamical state affects
collective behavior. For critical spreading, dynamical influence targets nodes
according to their spreading capabilities. For diffusive processes it
quantifies how efficiently real systems may be controlled by manipulating a
single node.Comment: accepted for publication in Scientific Report
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women
The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT).
However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made
Evaluation of the current knowledge limitations in breast cancer research: a gap analysis
BACKGROUND
A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients.
METHODS
Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action.
RESULTS
Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds).
CONCLUSION
Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
The impacts of climate change on river flood risk at the global scale
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5 × 0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between −9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application
- …
