4,736 research outputs found
Local majority dynamics on preferential attachment graphs
Suppose in a graph vertices can be either red or blue. Let be odd. At
each time step, each vertex in polls random neighbours and takes
the majority colour. If it doesn't have neighbours, it simply polls all of
them, or all less one if the degree of is even. We study this protocol on
the preferential attachment model of Albert and Barab\'asi, which gives rise to
a degree distribution that has roughly power-law ,
as well as generalisations which give exponents larger than . The setting is
as follows: Initially each vertex of is red independently with probability
, and is otherwise blue. We show that if is
sufficiently biased away from , then with high probability,
consensus is reached on the initial global majority within
steps. Here is the number of vertices and is the minimum of
and (or if is even), being the number of edges each new
vertex adds in the preferential attachment generative process. Additionally,
our analysis reduces the required bias of for graphs of a given degree
sequence studied by the first author (which includes, e.g., random regular
graphs)
Left ventricular torsional mechanics and myocardial iron load in beta-thalassaemia major: a potential role of titin degradation
published_or_final_versio
Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta-thalassaemia major: an exercise echocardiographic study
BACKGROUND: Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load. METHODS AND RESULTS: Thirty-two thalassaemia patients (16 males), aged 26.8+/-6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV) volumes, ejection fraction, systolic dyssynchrony index (SDI), and myocardial acceleration during isovolumic LV contraction (IVA) were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p4.6%, control+2SD) increased from baseline 25% to 84% in patients. Delta SDI(exercise-baseline) correlated with exercise-baseline differences in LV ejection fraction (p<0.001) and stroke volume (p = 0.006). Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05) and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018). Cardiac T2* in patients correlated with baseline LV SDI (r = -0.44, p = 0.011) and IVA-heart rate slope (r = 0.36, p = 0.044). CONCLUSIONS: Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major.published_or_final_versio
Structures and waves in a nonlinear heat-conducting medium
The paper is an overview of the main contributions of a Bulgarian team of
researchers to the problem of finding the possible structures and waves in the
open nonlinear heat conducting medium, described by a reaction-diffusion
equation. Being posed and actively worked out by the Russian school of A. A.
Samarskii and S.P. Kurdyumov since the seventies of the last century, this
problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer
Proceedings in Mathematics and Statistics, Numerical Methods for PDEs:
Theory, Algorithms and their Application
Scale invariance and universality of force networks in static granular matter
Force networks form the skeleton of static granular matter. They are the key
ingredient to mechanical properties, such as stability, elasticity and sound
transmission, which are of utmost importance for civil engineering and
industrial processing. Previous studies have focused on the global structure of
external forces (the boundary condition), and on the probability distribution
of individual contact forces. The disordered spatial structure of the force
network, however, has remained elusive so far. Here we report evidence for
scale invariance of clusters of particles that interact via relatively strong
forces. We analyzed granular packings generated by molecular dynamics
simulations mimicking real granular matter; despite the visual variation, force
networks for various values of the confining pressure and other parameters have
identical scaling exponents and scaling function, and thus determine a
universality class. Remarkably, the flat ensemble of force configurations--a
simple generalization of equilibrium statistical mechanics--belongs to the same
universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
Nosocomial infections in neonatal intensive care units: Cost-effective control strategies in resource-limited countries
Background: Nosocomial infections or hospital-acquired infectionsconstitute a global health problem. They lead to significant morbidity and mortality in both developed and resource-limited countries. The neonatal intensive care unit (NICU) is a suitable environment for disseminating these infections; underscoring the need for preventive intervention measures.Objectives: This review aims to highlight the global burden of nosocomialinfections in neonatal intensive care units (NICUs), to discuss their epidemiology and clinical spectrum, as well as the costeffective control strategies in resource-limited settings.Sources: Sources of information were from Google searches andPubMed- linked articles using the key words- nosocomial infections,neonatal intensive care unit, control. Related articles from hard copiesof medical literature and journals were also gathered.Results: Although paucity of data exists on the incidence of nosocomialinfections in NICUs in developing countries, reports from developedcountries indicate a range of 6% to 25%. Much higher figures were noted in some developing countries. Several risk factors for nosocomial infections were identified but varied in different NICUs surveyed. Effective control strategies have been recommended but hand washing or hand hygiene appears universally applicable in both developed and resource-limitedcountries. Economic analyses of these strategies in developed countrieshave established their costeffectiveness while the adaptability of hand hygiene program to resource-limited settings has been demonstrated in a World Health Organization pilot study in sub- Saharan Africa.Conclusion: Hand washing or hand hygiene by health-care personnelremains the most important evidence-based and cost-effective controlstrategy for the spread of nosocomial infections in NICUs in resource-limited countries.Key words: nosocomial infections; neonatal intensive care unit;control
Scaling Laws in Human Language
Zipf's law on word frequency is observed in English, French, Spanish,
Italian, and so on, yet it does not hold for Chinese, Japanese or Korean
characters. A model for writing process is proposed to explain the above
difference, which takes into account the effects of finite vocabulary size.
Experiments, simulations and analytical solution agree well with each other.
The results show that the frequency distribution follows a power law with
exponent being equal to 1, at which the corresponding Zipf's exponent diverges.
Actually, the distribution obeys exponential form in the Zipf's plot. Deviating
from the Heaps' law, the number of distinct words grows with the text length in
three stages: It grows linearly in the beginning, then turns to a logarithmical
form, and eventually saturates. This work refines previous understanding about
Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.
BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
- …
