research

Local majority dynamics on preferential attachment graphs

Abstract

Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)

    Similar works