2,006 research outputs found

    Detection of the United States Neisseria meningitidis urethritis clade in the United Kingdom, August and December 2019 - emergence of multiple antibiotic resistance calls for vigilance.

    Get PDF
    Since 2015 in the United States (US), the US Neisseria meningitidis urethritis clade (US_NmUC) has caused a large multistate outbreak of urethritis among heterosexual males. Its 'parent' strain caused numerous outbreaks of invasive meningococcal disease among men who have sex with men in Europe and North America. We highlight the arrival and dissemination of US_NmUC in the United Kingdom and the emergence of multiple antibiotic resistance. Surveillance systems should be developed that include anogenital meningococci

    The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with <it>Haemonchus contortus </it>more effectively than any other known breed of goat.</p> <p>Methods</p> <p>In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections.</p> <p>Conclusions</p> <p>We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world.</p

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Cardiac afferent activity modulates the expression of racial stereotypes

    Get PDF
    Negative racial stereotypes tend to associate Black people with threat. This often leads to the misidentification of harmless objects as weapons held by a Black individual. Yet, little is known about how bodily states impact the expression of racial stereotyping. By tapping into the phasic activation of arterial baroreceptors, known to be associated with changes in the neural processing of fearful stimuli, we show activation of race-threat stereotypes synchronized with the cardiovascular cycle. Across two established tasks, stimuli depicting Black or White individuals were presented to coincide with either the cardiac systole or diastole. Results show increased race-driven misidentification of weapons during systole, when baroreceptor afferent firing is maximal, relative to diastole. Importantly, a third study examining the positive Black-athletic stereotypical association fails to demonstrate similar modulations by cardiac cycle. We identify a body–brain interaction wherein interoceptive cues can modulate threat appraisal and racially biased behaviour in context-dependent ways

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database

    Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units

    Get PDF
    Objective:To test the efficacy of single family room (SFR) neonatal intensive care unit (NICU) designs, questions regarding patient medical progress and relative patient safety were explored. Addressing these questions would be of value to hospital staff, administrators and designers alike. Study Design:This prospective study documented, by means of Institution Review Board-approved protocols, the progress of patients in two contrasting NICU designs. Noise levels, illumination and air quality measurements were included to define the two NICU physical environments. Result:Infants in the SFR unit had fewer apneic events, reduced nosocomial sepsis and mortality, as well as earlier transitions to enteral nutrition. More mothers sustained stage III lactation, and more infants were discharged breastfeeding in the SFR. Conclusion:This study showed the SFR to be more conducive to family-centered care, and to enhance infant medical progress and breastfeeding success over that of an open ward

    Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae)

    Get PDF
    The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions
    corecore