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Abstract In understanding upper secondary school students’ interpretations of infor-
mation in graphical representations of a distance–time graph and an ECG graph, little
attention has been paid to the analysis of the condition of the conceptual development
related to their utterances. Understanding this better can help improve the teaching of
interpretations of information in graphical representations of different situations. This
paper integrates results from 2 studies and 3 theoretical perspectives: Tall and Vinner’s
theoretical perspectives on learning, Chi’s ontological perspectives on conceptual
development and Friel’s theoretical perspectives on interpretation of graphical infor-
mation. The findings provide evidence to support the conjecture that iconic interpreta-
tions could be stimulated and generated as a result of student categorisation of a
distance–time graph as an event, when in fact the graph is being used to describe and
communicate a process. The outcome further indicates that students found a resem-
blance between the ECG diagram and the periodic function of f(x) = sin(x).

Keywords Conceptual development . Graphical representations . Interpretations .

Intuitive ideas . Slope

Introduction

Mathematical representations such as diagrams, histograms, functions, graphs, tables and
symbols facilitate understanding and communication of abstract mathematical concepts or
other situations described inmathematical terms (Elby, 2000; Leinhardt, Zaslavsky, & Stein,
1990). Nevertheless, humans of today are facing a world that is shaped by increasingly
complex, dynamic and powerful systems of information through various media. Being able
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to interpret, understand and work with graphical representations involves mathematical
processes the student needs to appreciate, comprehend and be able to address when facing
interpretation challenges (Friel, Curcio & Bright, 2001).

For mathematics education in an elementary, middle, lower secondary and upper
secondary perspective, teachers use different representations in order to make it
possible for students to gradually understand more and more complex mathematical
objects and concepts. Geometrical constructions, graphs of functions and a variety of
diagrams of different kinds are used to introduce new concepts and to study relations,
dependency and change (Trigueros & Martínez-Planell, 2010). Mathematical represen-
tations, structures and constructions are also used in different scientific branches, such
as biology, chemistry, physics or social science. It is of major importance that students
learn how to interpret graphical representations in a scientific and successful way.

Understanding a graphical representation of a situation requires different concepts be
incorporated in the specific representation. The critical problem of transition between
and within representations has been addressed in several studies (Breidenbach, Hawks,
Nichols & Dubinsky, 1992; Janvier, 1987; Sfard, 1992). They claim that bridging the
gap between algebraic and graphic representations depends highly on how students
encapsulated relevant concepts involved in the representation.

We acknowledge that slope is a universal topic in every country’s mathematics
curricula. It is usually introduced with linear functions. It is central for describing the
behaviour of a curve and has an essential role in the development of calculus (Lobato &
Thanheiser, 2002; Stump, 1997, 1999, 2001a, b; Zaslavsky, Sela & Leron, 2002).
These investigations on the understanding of slope have made valuable contributions to
understanding what makes this concept so complex to learn.

Research Questions

& How do students interpret and understand graphical representations of a situation?
& How do students use their interpretation in order to investigate special features of

the situation at hand?

Theoretical Framework

A good deal of research has been conducted to investigate student’s alternative conception
about scientific concepts (diSessa, Hammer, Sherin & Kolpakowski, 1991; diSessa, 1993;
Elby, 2000; Hammer, 2000; McDermott & Schaffer, 2005). In our study, we use the term
alternative conception instead of misconception, which is associated with inaccuracy and
mistakes. diSessa (1993) claimed that humans gradually acquire an elaborate sense of
mechanism—a sense of how things work in dealing with the physical world, what sorts
of events are necessary, likely, possible or impossible. Control of the physical world is one
function for the sense of mechanism and, in addition, of humans being capable of taking
actions with appropriate consequences. diSessa et al. (1991) refer to the present view of the
sense of mechanism as Bknowledge in pieces^.

This view of physics understanding and physics learning is knowledge-based. It
assumes only a few very simple cognitive mechanisms, although the resulting knowl-
edge system is conjectured to be large and complex. The central focus in addressing
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these issues is a hypothetical knowledge structure called phenomenological primitive,
p-prim for short, having these properties (diSessa, 1993). P-prims are rather small
knowledge structures, typically involving configurations of only a few parts, which act
largely by being recognised in a physical system or in the system’s behaviour or
hypothesized behaviour.

Kohl (2001) claims that interpretations of graphical representations are sometimes
influenced by intuitive alternative ideas. There have been many studies on students’
interpretations and conceptions of graphical information. diSessa et al. (1991) studied
how students in compulsory school Breinvented^ graphical representation of motion.
Nemirovsky & Rubin (1992) studied student’s interpretations of height and slope and
how students confound these concepts when asked to articulate the relation between
graphs and reality. Nemirovsky (1994) found that negative velocity is especially
difficult since it is often interpreted as lower velocity.

Many mathematical concepts are encountered in some form or other before they are
formally defined. Tall (2004) claims that mathematical thinking is strongly related to
the cognitive processes that give rise to mathematical knowledge. Learning or concep-
tual development in mathematics is seen as a change in the individual’s concept image.

23We shall use the term concept image to describe the total cognitive structure that is
associated with the concept, which includes all the mental pictures and associated
properties and processes. …The concept definition [is] a form of words used to
specify that concept. We shall call the portion of the concept image which is activated
at a particular time the evoked concept image. At different times, seemingly conflict-
ing images may be evoked. (Tall & Vinner, 1981, p. 152)

Tall (2004) suggests a possible categorisation of cognitive growth into three worlds
of mathematics or three distinct but interacting developments. Three worlds of math-
ematics are founded on the assumption that the learning of mathematical concepts is
individual and develops at different stages: through perception, through symbols or
through axioms.

The first world is the conceptual–embodied world, the world we meet through
perception, the visual and spatial mathematical world. Most of us have a concept image
of a circle. A circle is round, it may be large or small, and it may be red or blue. We
have not learned this through educational efforts; instead, we have learned this through
the physical world and through observations. The first mathematical world consists of
objects we have discovered and observed in the real world, knowledge we have gained
through our senses. It also contains mental conceptions of non-existing objects such as
a point with no size and lines with no thickness. This is in alignment with Lakoff and
Nunez’s (2000) claims that mathematics draws on and is founded in bodily experience.

The second world is the proceptual–symbolic world. In this world, we find symbols
and actions that we have to perform when we, for example, are dealing with
manipulations in algebra. In this mathematical world is the concept of procept
central, which consists of the first part of process and the end of the word concept.
Gray and Tall (1994) introduced the concept procept to describe a central part of the
learning of mathematical concepts. Gray and Tall (1994) underlined that it is important
to learn how to apprehend mathematical symbols both as concepts and as parts of a
process at the same time.
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An elementary procept is the amalgam of three components: a process which
produces a mathematical object, and a symbol which is used to represent either
process or object. (Gray & Tall, 1994, p. 12)

According to Gray and Tall (1994) 2 + 3may be perceived as a process (addition) or as
a concept (sum).When the individual is in this symbolic world, he/shemay use and reflect
over the mathematical symbolic language and its function, meaning and application.

The third mathematical world is the formal mathematical world. Is this world are
axioms, theorems and proofs in focus. Based on given assumptions regarding the
proportion and relation between mathematical objects are axiom-based structures built
and used as foundations for mathematical theorems. Mathematical thinking is thereby
based on perception developing subtly in sophistication through the mental world of
conceptual embodiment, operations developing through actions that become mathe-
matical operations in a world of operational symbolism and increasingly subtle use of
verbal reasoning that leads to formal aspects of embodiment and symbolism and,
eventually, to a world of axiomatic formalism. The development takes account of the
individual’s previous experience which may operate successfully in one context yet
remain supportive or become problematic in another, giving rise to emotional reactions
to mathematics, leading to a spectrum of success and failure over the longer term (Tall,
2004).

The theories about cognitive development of mathematical knowledge articulated in
Tall and Vinner (1981) and Gray and Tall (1994) are in many ways quite comparable
with the historical development of mathematics as an axiomatic science.

When we face a graph in a coordinate system, we need to identify attributes of the
construction of the coordinate system. We are able to make sense of the graph by
referring to the coordinate system if we manage to decode the meaning of the units for
the axis and the behaviour of the graph. For example, Friel et al., (2001) claim that there
are three different cognitive conditions of individual understanding when interacting
with graphical representations: to read the features of the graph, to read between the
features of the graph and to read beyond the features of the graph. The three aspects
might be seen as Binterpreting the axes individually ,̂ Bseeking a relationship between
the axes as indicated by the graph^ and Bre-interpreting graphical relationships in some
contexts that are associated with the graph^.

In order to understand underlying information presented in a graph, the interpreter
also needs to understand the underlying concepts of the presented situation. According
to Chi, Slotta and de Leeuw, (1994), & Chi, (2013), many of student’s alternative
conceptions about scientific concept depend on inappropriate categorisation of existing
concepts in an ontological sense. Figure 1 illustrates how our understanding of the world
around us is related to three ontologically Blateral^ categories: mental state, entities and
processes. This is a lateral structure and not a hierarchic structure. We do not know what
structure is established first in our mind, for instance, animals or vegetables.

Meaning about concepts results from observations and active engagement. Addi-
tional characteristics evolve throughout the concept formation process. For example,
toys have characteristics from the category artefacts that are mutual for all toys: they
can be broken, they are not alive, they can be thrown away, etcetera.

We encounter a concept by assigning the concept to an existing ontological category,
what Piaget (1970) called assimilation. For example, the weight of the world series in
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soccer is an awkward statement since the weight of something belongs to BEntities^,
whilst the world series in soccer is categorized as an BEvent^, found under BProcess^.
These two concepts belong to different categories with different properties, and they
cannot be construed within the same context (Fig. 1).

Even close sub-categories under the same branch might be ontologically dif-
ferent lateral categories. For example, the difference between artefacts and living
beings is quite transparent for most young children. The act of assigning concepts
to different categories is an act of conceptual reconsidering. This is a constantly
ongoing cognitive activity and strives for the interpretations of new situations and
to make them understandable. Sometimes concepts are assigned to categories to
which they do not belong. Conceptual development occurs when a concept has to
be reassigned from one subcategory to another subcategory.

Learning of scientific concepts can be challenging since the process sometimes
requires that a concept be reassigned to an ontologically distinct category (across trees).
One such well-known situation is when students view light and electrical current as
material substances based on an earlier encounter. Scientific theories describe electrical
current and light as sequential processes (Chi, 2013).

Imagine that we want to model the situation of selling coffee cups in a coffee
bar during a day from 08:00 AM and forward. This selling can be expressed as sold
cups (y) over time (x) and expressed as (x, y) = {(10, 10), (12, 21), (14, 40), (16,
78), and so forth. When we construct a model from these values, we might arrive
at the graphical representation of f(x) = 0.34 · e0.34·x. The table of values consists
of discrete entities, whilst the graphical representation describes a continuous
process, and they belong to different ontological categories.

There is a distinct difference between an event and a process. An event has a
beginning and an end. For example, if we take a worldwide trip. A process has no
beginning and no end, as, for example, electricity. Sometimes when we are telling
about an event, it is unnecessary to tell about sub-events in the right order. For example,
you can tell about a trip to Rome and to Paris without always keeping in mind what city

Fig. 1 Conceptual development in an ontological structure (Chi, 2013)
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you visited first. But for a process, it is important that all sub-processes come in the
right order. An event depends on time and space as it is almost impossible to describe
an event without time and space. A process, on the other hand, is independent of time
and space.

Methodology

This study relied on qualitative approaches regarding methodology and analysis. The
qualitative research method created the opportunity to make a detailed analysis of how
students perceived a certain situation or a certain concept. Our aim was to find a
credible explanation that describes student’s interpretations and explanations of a
situation or a context in the world together with conceptual development related to
their utterances.

Study 1

Our first study took place in the fall of 2013 with 17 upper secondary school students at
the natural science programme (nine girls and eight boys) in year 2. The students were
all 18 years old or older and had studied at least three different mathematics courses at
upper secondary school, calculus inclusive. All students’ volunteered to take part in the
study. They were grouped into small groups of two or three students each group; a
video camera was mounted to record the discussion. No observer was present since we
wanted the students to be comfortable in the discussion and in their comments and
attitudes.

Our intention was to record and analyse individual student’s responses, and we
considered that this was most easily done by encouraging group discussions in
which students were trying to interpret the concept of motion. The group discus-
sions were open and sometimes became intense as students discussed and tried to
convince each other with arguments and responded to four separate questions. The
students took notes and did their calculations on paper, and each session was
recorded for about 1 h. The transcription was based on the group discussion, but
the focus of the analysis was on the individually expressed interpretations of the
situation. Our citations from students’ reasoning where transcribed directly from
the video film we analysed. When we categorized students’ answers, we were not
mainly interested in right or wrong answers, but more in the state of conceptual
development.

As we engaged in analysis of the transcripts, we were guided by the notation
that the transcription has to be selective in order to facilitate analysis of data
(Linell, 1994). However, we chose not to take into account some variables, for
example, body gestures and tone of voice. Transcription on the other hand has
been designed as written linguistic constructions, and great importance has been
given to accurate presentation of students’ statements. Following Linell (1994), we
decided to view the transcriptions as open units of analysis, which means that we
have the opportunity to omit or include conventions, symbols or pauses based on
the nature of the study.
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An important note on the problem we gave the students is that it is a graphical
representation of a theoretical physical concept of motion. In our study, we required
the students to interpret the graphical representations of an imaginary train and
thereafter use that interpretation as the base for their analysis.

Situation and Questions

When we face a graphical description of a real-life event, we need a mathematical
interpretation of the graph since the graph belongs to a mathematical world. But we
also try to understand the real-life event that took place, and sometimes we do this with
non-mathematical references. We wanted the students to analyse and make interpreta-
tions of a real-life situation in mathematical terms. Students were presented with Fig. 2,
which illustrated a graphical representation of a 4-h train journey. It is a distance–time
graph, thereby requiring a coordinate system. We assumed that most students had either
travelled on a train or at least knew what travelling on a train might be like. We also
assumed that the students had experienced linear motion in different forms. In teaching
mathematics and physics, linear motion is an important topic. In order to make useful
interpretations of the given graph of the train’s motion, the students needed to use
accurate interpretations of how linear motion is expressed in a graph. In this represen-
tation, the train path is a continuous line.

Figure 2 shows the motion of a train during a time interval. The distance s is in
kilometres and the time t is in hours. The train starts from a train station at t = 0. The
distance s is therefore a measurement of the distance the train has travelled from the
station at a given time t.

Questions:

1. When does the train run at maximal velocity? Please explain your answer.
2. When does the train run at minimum velocity? Please explain your answer.
3. What could be said about the train’s direction by interpretation of the graph?
4. Sketch an appropriate velocity–time graph of the motion during these 4 h.

Fig. 2 A train in motion
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Results: Study 1

We searched for the most developed and least developed interpretations, which all were
interesting. We were interested in finding similarities and differences amongst utter-
ances. Three main categories of conceptual development were identified: intuitive and
iconic interpretations, scientific interpretations and a category with influences from
these two. We labelled these categories as least, more and most developed
interpretations.

Least Developed Interpretation

Our description of student’s utterances in this category is that the student’s
interpretations mainly were based on intuitive and iconic interpretations. In our
analysis, we found six student’s utterances that we considered belonging in this
category. Below are quotes from some of the student’s utterances in this
category.

Question 1: Maximal Velocity

Student 1: The train has maximal velocity at 2 h. The train is at the highest point
when the time is 2 h.
Student 2: Here is the train going down from a hill, here is the train going up at a
hill, here is the train going up for a hill again, check it out …he he…

Question 2: Minimal Velocity

Student 1: The first 12 min.
Student 2: The train is at the lowest value during the first 12 min.

Question 3: Direction of Motion

Student 1: From the start it is a straight way so the train is accelerating up to a
velocity of 300 km/h. The train is breaking in the curves, in the first curve is the
velocity 300 km/h, in the next curve is the velocity 200 km/h.

Question 4: Velocity–Time Graph
The Figs. 3, 4, and 5 are computer constructed graphical representations that are true

copies of the students’ work.

Student 1: The student sketched this graph, but offered no rationale for its
construction (Fig. 3).

More Developed Interpretation

Students in this category were students who initially started their interpretations and
discussions based on scientific reasoning, but later abandoned that thinking and instead
used intuitive and iconic interpretations. In our analysis, we found three students with

1194 T. Lingefjärd, D. Farahani



utterances that we considered belonging in this category. Below are quotes from some
of the students’ discussions in this category.

Question 1: Maximal Velocity

Student 3: After 1 h because it is the largest slope.

Question 2: Minimal Velocity

Student 4: During the interval 3.6 – 4.0 h since that is where the slope is large.

Question 3: Direction of Motion

Student 3: …if it goes up a hill, if possible, then the train driver must step on the
accelerator. Is that even possible for a train?

Question 4: Velocity–Time Graph

Student 4: The student sketched this graph, but offered no rationale for its
construction (Fig. 4).

Fig. 3 An incorrect velocity–time graph

Fig. 4 An incorrect velocity–time graph
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Most Developed Interpretation

Students in this category used utterances with scientifically grounded interpretations
from the start and maintained them during their discussion. Consequently, they con-
structed an accurate velocity–time graph. In our analysis, we found eight students with
utterances that we considered belonging in this category. Below are quotes from some
of the students’ discussions in this category.

Question 1: Maximal Velocity

Student 5: When the curve has the largest slope.
Student 6: …and one square upwards is a fifth, so it is 20 km, he is
travelling 20 km in a short time, while here he is travelling 20 km during
a long time …

Question 2: Minimal Velocity:

Student 5: When the slope is zero. Since the velocity is not changing.

Question 3: Direction of Motion

Student 6: We get a negative segment which meant that the train is going back but
only about half the way.

Question 4: Velocity–Time Graph

Student 5: The student sketched this graph, but offered no rationale for its
construction.

Fig. 5 A correct velocity–time graph
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Discussion: Study 1

Students 1 and 2 claim that the highest velocity occurs after 2 h, with the explanation that the
graph is illustrating a train going Bup a hill^ and Bdown a hill^. These students interpret the
graph as a true image andmake an iconic interpretation. Student 1 shares the opinion that the
velocity is Bhighest at the top point up here^ and that the train is going up and down.
Students 1 and 2 also connect the graph to memories and events such as the roller coaster in
the amusement park Liseberg in Gothenburg or to trams in San Francisco. These students
select an everyday interpretation of the train’s motion, not a scientific interpretation.

Students’ alternative iconic interpretations of graphical representations are well
known from research (Duval, 2006; diSessa, 1993; Elby, 2000; Friel et al., 2001;
Leinhardt et al., 1990) and also obvious in this study.

When the students are asked to sketch a velocity–time graph, it seems as if they are
strongly affected by the distance–time graph. Therefore, they sketched something almost
identical to the graph in Fig. 2. Maybe this was derived from a wish to at least present
something.

Students sometimes interpret a representation in the simplest, most literal way possible,
such as a bump on a graph corresponding to a hill. This knowledge element is a represen-
tational analog of the phenomenological primitives (or p-prim) described by diSessa (1993),
which include such basic reasoning elements. Some representations also include special
attributes that quickly capture our attention. These attributes reference all the visual charac-
teristics that are embedded in graphical representations such as corners, edges, contours, etc.
We claim that the intuitive interpretation could be seen as a part of the individual’s perception
of a representation, such as a graph. Iconic views are partly due to the activation of a
cognitive structure, a special intuitive knowledge element. These interpretations can be
highlighted when they are expressed verbally or in writing (see Elby, 2000).

Student 1 and 2’s interpretation of the distance–time graph could be seen as an alternative
descriptivemodel. The students talk about different places, refer to different entities and give
examples in different ways. One thing they have in common is that they all give iconic-
based interpretations. The interpretation process, together with the need to create a context
for the train, seems to bemore important for the students in this group than to think about the
explanation model’s validity and reliability. Once they have selected an everyday discourse
in their arguments, it seems difficult for them to explain the motion scientifically.

Students 1 and 2 did not manage to apply any scientific concepts for describing the
motion of the train. In the students’ interpretations of the graph, we find references to
place and time, which characterize the descriptions of events. It is almost impossible to
describe an event without referring to places and time, whilst a process in general is
independent of time and place (Chi, 2013). Many of students’ alternative conceptions
about science concepts can be explained by an inappropriate ontological category to
which the concepts belong, according to Chi (2013).

However, the empirical data indicates that students’ initial conceptions of distance–
time are categorized as Bevent^ since students’ interpretations link their thinking to
amusement parks in Gothenburg or to trams in San Francisco, which contain attributes
of the category event. However, the distance–time graph in Fig. 2 is a mathematical
representation of a sequential Bprocess^.

In this case, the interpretation of the graphical representation has to be reassigned to
an appropriate ontologically distinct subcategory, from subcategory Bevent^ to

The Elusive Slope 1197



subcategory Bprocedure^. Learning of science concepts in general and motion graph in
particular could be facilitated by training students in reassigning the concept to an
appropriate ontological category.

Our results indicate that these students eventually favour an event in their explanations.
The challenging issue is that a train trip and themathematical representation used to describe
the motion of the train belong to two different ontological categories. This makes it
sometimes more difficult to learn and understand mathematical and science concepts. The
conceptual change in Fig. 1 occurs when the concept is reassigned from the subcategory
Bevent^ to the subcategory Bprocedure^. We do not of course know how robust this shift
might be over time or in other situations.

In question 1, student 3 and student 4 identified the interval where the train’s velocity
was maximal by using the slope of the graph. Later on, the student claims that the velocity
is lowest in an interval where the graph is decreasing.What characterizes the interpretations
in this category is that they start with relevant mathematical concepts in their reasoning,
whilst they later on change into iconic interpretations. Student 3 identifies the interval 3.6 to
4 h where the graph has its lowest slope. Then, student 3 relates this to the least velocity.
Student 3 and student 4 construct a velocity–time graph that is nearly identical to the
distance–time graph given in the situation. Some of these students’ interpretations and
utterances seem to be mainly based on mathematical concepts, whilst iconic and intuitive
ideas also come forward and take place in the discussion. Some intuitive ideas are resistant
and remain in our thinking long after we have encountered them.

Student 5 and student 6’s discussion uses a formal mathematical discourse. One quali-
tative aspect of understanding of a distance–time graph is found in student 5’s reasoning. She
illustrates a useful techniquewhen she is looking at proportions for determination of slope of
the graph. The discussion reveals that the students manage to distinguish the meanings of
distance and velocity.

In this conversation, the students validate and develop their reasoning concerning the
meaning of the graph’s slope. The students’ responses show that they are not confused by the
shape of the graph; instead, they are arguing about the relation between the slope of the graph
and the state of motion. Neither student 5 nor student 6 is making iconic interpretations of the
graph, which allows them to give a scientific description of the meaning of the graph. These
students are comfortable with scientific discourse, both in speech and in written language,
which they use for explaining interpretations or to explain concepts. The students are using
concepts from mathematics such as Bdirection^, Bpositive^ or Bnegative^.

Student 5 and student 6 could also draw a velocity–time graph, the most developed
interpretation in this study. According to Friel et al. (2001), Breinterpreting graphical
relationships in some contexts that are associated with the graph^ is generally more
challenging for students. Our study confirms this claim as only two students demonstrated
the ability to recognise, identify, interpret and draw conclusions about the concept slope and
thus were able to do Breinterpreting graphical relationships in some contexts that are
associated with the graph^.

Study 2

Our second study took place in the fall of 2014with 18 upper secondary school students, ten
girls and eight boys, at a natural science programme in year 3 in a local upper secondary
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school in Gothenburg. The students had all studied at least four mathematics courses and
two courses in physics. The students took a test in physics with ten questions to be answered
within 2.5 h. To assess students’ interpretations, we used a graphical representation of an
ECG diagram presented to them as one of the ten questions. The empirical data consists of
short written answers from 18 students. Categorisation was done based on the condition of
conceptual development. Conceptual development is often described as a causal process in
which changes in an embraced system of assumptions result in a new system of assump-
tions. We considered it important to use the same categorisation as in study 1.

Situation and Questions

The graphical representation of an ECG diagram is probably one of the most well-
known representations for describing a function of the body, namely the work of the
heart. Since all humans have a heart, it is interesting per se. We assumed that all
students in the study would be able to recognise the shape of an ECG diagram and
therefore be able to find interest in the underlying mathematics. Our aim was to
investigate how the students would be able to interpret and relate the mathematical
model expressed by the ECG diagram. The students were also asked to calculate the
frequency and the period for the ECG signal in the task, concepts included in both
trigonometry and wave physics instruction. We consider that the ECG task further-
more also highlights several mathematical competencies in the Swedish curriculum,
such as communication, conceptual understanding, problem-solving, procedures and
relevance. The following ECG diagram was given to the group of students.

Figure 6 represents a graph of the behaviour of an ECG signal from an arbitrary
patient. ECG measurement is a technically difficult problem since a rather weak
signal of about 1 mV has to be discerned in an environment with strong electricity
disturbance from fluorescent lamps, electrical fans, electrical heaters and so forth. An
ECG diagram is a graphical representation of the activity of a heart as a process (over
time). An event in this context would be something that happens just once.

Fig. 6 An ECG diagram over one period
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Questions:

(a) Determine the ECG signal’s period and frequency.
(b) How many heartbeats per minute is the ECG diagram showing?
(c) When is the signal’s rate of change maximal? Explain your interpretation.

Results: Study 2

When we categorized students’ answers, we were not mainly interested in right or
wrong answers, but more in the condition of conceptual development. As in the
previous study, three main categories could be identified for answers: intuitive and
iconic interpretations, scientific interpretations and a third category with influences
from these two categories. We have labelled these categories as least, more and most
developed interpretations, respectively.

Question (a)
All 18 students responded to question (a), which investigated students’ concept

images of period and frequency. Twelve students managed to calculate the period. Six
students managed to calculate the frequency correctly.

Student 1: 360° and 900 mV/s
Student 2: 0.64 s (draws a sine curve).
Question (b)
All 18 students responded to question (b). A question of heartbeats per minute is directly

related to something the students were expected to know something about. A larger number
of students determined the number of heartbeats per minute by using period instead of
frequency. Twelve students managed to calculate the pulse as 94 beats per minute, which is
correct. One student arrived at a pulse of 6; two students got a pulse of 150.

Question (c)
Thirteen students responded to question (c). The purpose of question (c) was to actualize

the students’ interpretations of the concept rate of change in relation to the ECG diagram,
which, according to Friel et al. (2001),maybe interpreted as to read between the features of the
graph. This means that the students have to create a context about actual quantities and units.

Least Developed Interpretation

Question (c)
Six students responded with the top of the graph. Their concept image interprets the

highest point of the graph as the maximum rate of change. This might very well be the
result of an immediate reaction triggered by the word Bmaximum^.

Student 3: The highest point is the maximum.

More Developed Interpretation

Question (c)
Five students gave responses that we considered more developed.
Student 8: Between 0.24 and 0.28.
Student 9: Arrow in the figure.
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Most Developed Interpretation

Question (c)
Students in this category gave an implicit definition, thereby avoiding the possibility

of pointing in the wrong direction. Two students managed to relate the rate of change to
the steepness of the graph.

Student 10: Where the slope is steepest.

Discussion: Study 2

Question (a) is considered to be of the kind that students have to Bseek a relationship
between the axes as indicated by the graph^ Friel et al., 2001, which in turn means that
the students have to interpret the coordinate system and the features of the ECG
diagram in terms of what the graph represents.

Question (b) requires that the students have a concept image of periodic processes of
some situation or some phenomena, which in turn may involve the concept of
frequency. It came as a surprise to us that only 12 students out of 18 answered with
the correct period from interpretation of the ECG diagram. All 18 students used the
same reasoning for calculation of the period, where 12 students managed the correct
calculations. Even more surprising was that only six students could determine the
frequency of the ECG diagram. One possibility, according to Tall & Vinner (1981), is
that students who had not answered the question about frequency may perhaps not have
a concept definition of frequency and therefore do not know how it should be
interpreted in this context, or perhaps they just did not know how frequency and period
are related.

Student 1’s response to question (a) was 360° and 900 mV/s. This interpretation
seems to be inspired by trigonometric function curves, for instance the function
f(x) = sin(x). That, in turn, according to Tall & Vinner (1981), may be seen as an
evoked concept image which is strongly associated with trigonometric curves. Another
aspect is that the student’s interpretation is independent of time. The student’s evoked
concept image results in the fact that he or she ignores the ECG diagram’s time
dependence. Student 1 seemed to need the periodic behaviour from trigonometric
functions in order to handle the period when interpreting the ECG diagram. All students
in this study have been introduced to basic concepts related to trigonometric functions.
This student experienced difficulties in the interpretation of the ECG diagram and,
hence, relates the period to 360°.

Student 2’s response to question (a) was 0.64 s (draws a sine curve; see Fig. 7). This
student sees a resemblance between the ECG diagram and the function f(x) = sin(x).
The student used the sine curve to define one period and to set it equal to 0.64 s. The
student has a developed concept image of periodic behaviour, which allows her/him to
apply properties of this behaviour on a different situation. An important notation is that
time as variable is integrated in this interpretation.

Then, the student calculates the frequency by 1/period and also calculates the
number of heartbeats: 94 beats per minute. In this example, the evoked concept image
was useful for the student’s interpretation and analysis.

Even if an ECG diagram is used as a tool of medical expertise to do diagnostic work
and to recommend suitable actions, it mediates a content that is constructed, interpreted
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and communicated in mathematical ways and with elementary mathematical explana-
tion models. One such example is the description of a graph in terms of the graph’s
slope and how it should be interpreted within the frame of the actual scientific
discipline. Our purpose with question (c) was to actualize the students’ interpretations
of the concept rate of change in relation to the ECG diagram, which, according to Friel
et al. (2001), may be interpreted as Bseeking a relationship between the axes as
indicated by the graph^. This means that students can create a context around actual
quantities and units.

Some students responded with the top of the graph. Their concept image interprets
the highest point of the graph as the maximum rate of change. It is well known that
students sometimes have difficulty to distinguish height and slope in a distance–time
graph (see Lobato & Thanheiser, 2002; Stump 1997, 1999, 2001a, b; Zaslavsky, Sela,
& Leron 2002). We see this occurring also in a study with an ECG diagram. Students
might respond similarly if we had a situation with the number of unemployed on the y-
axis instead.

Students’ interpretations of graphs and other representations can shed empirical light
on a long-standing theoretical debate about learning of scientific concepts. Students’
intuitive knowledge about science concepts may consist of unarticulated, loosely
connected knowledge elements, the activation of which depends sensitively on context
(see diSessa, 1993).

Learning is not a matter of replacing bad mini-generalizations with good ones.
Instead, it is partly a matter of tweaking those mini-generalizations into a more
articulate, unified, coherent structure. In our view, that is because the hill mistake and
similar iconic interpretations spring from the activation of a cognitive structure, an
intuitive knowledge element p-prim described by diSessa (1993).

Alternative interpretations have advantages; it correlates with daily life experience
and with common sense (no major conflicts to start with). In daily life, often, higher
means more; higher salary is better than lower salary.

The figural units of an original figure can be visually reconfigured without any
recourse to a mathematical property. This purely visual operation of reconfiguring

Fig. 7 An invoked concept image
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an original figure underlies most of the examples of visual evidence that are used
in teaching to give ‘intuitive’ explanations of certain mathematical results. But, in
most cases it does not work because the visual processes of gestalt recognition do
not run in the same way as required and expected from a mathematical point of
view. (Duval, 2006, p. 112)

Some students compared different time intervals and their responses contained the
time interval where the rate of change was maximal. Other students simply formulated
it as: Where the slope is steepest. The students in this category made the interpretation
that the slope of the graph is a relevant property of the graph. We interpret that these
students’ knowledge about graphical representation has been developed to a more
integrated and more consistent concept image.

Conclusions of the Two Studies

Our questions in study 1 problematized a distance–time graph describing a train
journey between stations. Interpretation of motion graphs covers a number of interest-
ing concepts. The questions in study 2 problematized an ECG diagram. The slope of
the graph is a central concept in both study 1 and study 2. The tasks were intended to
highlight different aspects of students’ conceptual understanding of graphical represen-
tations and its properties. Particular attention is put on students’ interpretations and
ability to read the features of the graph, to read between the features of the graph and to
read beyond the features of the graph (Friel et al., 2001).

Stump (1997, 2001a, b) found that geometric ratios were the dominating represen-
tation teachers use to introduce slope. Stump (1999) noted that teachers expressed
concern with students’ understanding of slope. Students, texts and teachers sometimes
put great attention on procedures for determining slope rather than developing concep-
tual notions of slope. Our studies focused on conceptual development and how
interpretations of daily life situations of a train’s motion or a heart beating can affect
students’ creative and scientific reasoning.

Study 1 revealed that some students interpret distance–time graphs as a mathemat-
ical description of an event. Students express statements with strong influences from
places (such as San Francisco and Liseberg) which characterize the description of an
event. However, a distance–time graph is a mathematical construction of a sequential
process independent of time and places. We consider students’ interpretations of the
distance–time graph as a roller coaster ride as related to an event.

Another learning challenge is a train from the Bmaterial world^ and distance–time
graph as a mathematical construction of motion of the train belonging to a different
ontological category. On the other hand, if a student conceives the distance–time graph
as a roller coaster, then the graph will be interpreted as a distance–distance graph and
time as a variable disappears in that interpretation.

Study 2 gave another result. When interpreting the ECG diagram, few students
made utterances which related the ECG diagram to a realistic situation or daily life
awareness about their heart. The findings from study 2 indicate that questions and
information in relation to an ECG diagram, in some cases, reveal students’ evoked
concept images expressed as a sine curve (see Fig. 7).
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To interpret students’ interpretations of graphical representations is a complex
issue. How would our theoretical sources be used in order to view and explain
these situations? The three cognitive conditions in the framework of Friel et al.
(2001)—to read the features of the graph, to read between the features of the
graph and to read beyond the features of the graph—have been identified amongst
student’s responses in both studies. Reading between the features of the graph data
requires more developed conceptual understanding than reading from the features
of the graph, whilst reading beyond the features of the graph, for example the
relation between the graph and reality, requires perhaps the most developed
conceptual understanding.

Chi (2013) offers a framework based on an ontological assumption about the nature
of scientific concepts. Some of the alternative conceptions in this study can be
explained and understood by assigning the concept to an inappropriate ontological
category. The ECG diagram represents the activity of the heart and belongs to a
different ontological category. Given our results, this was a learning challenge for our
students.

Tall and Vinner (1981) provide a theoretical framework to analyse and explain the
condition of students’ concept image of graphical representation. Both studies 1 and 2
showed that the students’ evoked concept images are strongly context-dependent. The
distance–time graph of a train’s motion arose as an association to a roller coaster, whilst
the ECG diagram resulted in a graph of f(x) = sin(x).

What is new in our two studies?
We have merged different theoretical perspectives together to explain students’

interpretations. The theoretical framework in our studies includes an ontological
perspective on learning of graphical information. Chi (2013) claims that students’
alternative conceptions about light and electrical current emerge from an inappropriate
ontological category to which the concept belongs. Students’ reassigning of the
concepts light and electrical current from matter to process promoted their learning
process. We have used the ontological perspective to explain students’ alternative
conceptions about graphical representations of two different situations. Adding to Chi’s
framework, and as a way to develop this learning perspective, we identified two
subcategories—BProcedure^ and BEvents^—in the category BProcess^, which is used
to explain the nature of alternative conception and also as a goal for the learning of
graphical representation.

We used Tall and Vinner’s (1981) framework to explain why the student who
draws a sine curve actually does that. The student sees a resemblance between the
ECG diagram and the function f(x) = sin(x), and the sketch of f(x) = sin(x) helps the
student to solve the problem. We understand this as an evoked concept image.

All three cognitive conditions in the framework of Friel et al. (2001)—to read the
features of the graph, to read between the features of the graph and to read beyond the
features of the graph—have been identified amongst students’ responses in both
studies. Our findings, based on two different studies, indicate that students sometimes
lack coherent concept images and coherent concept definitions when they are chal-
lenged and asked to do interpretations of graphical representations. Consequently,
discussing and teaching students about scientific concepts may help them learn and
understand the mathematical construction of science processes such as distance–time
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graph and ECG diagram. Helping students understand the challenging topics in science
and mathematics through ontology training may facilitate the learning process.
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