10 research outputs found

    Cellularized hydrogel bioprinting to obtain prevascularised oral soft connective tissue scaffolds for tissue engineering

    No full text
    Introduction : Bien que la muqueuse orale prĂ©sente un potentiel de rĂ©gĂ©nĂ©ration efficace, certaines pertes de substances nĂ©cessitent une augmentation chirurgicale de la quantitĂ© et/ou de la qualitĂ© du tissu. La greffe autologue est la thĂ©rapeutique de rĂ©fĂ©rence mais possĂšde trois inconvĂ©nients majeurs : une morbiditĂ© et une quantitĂ© de tissu limitĂ©e au niveau du site donneur ainsi qu’une connexion vasculaire lente du greffon au niveau du site receveur. L’ingĂ©nierie tissulaire (IT) peut pallier en partie ces problĂ©matiques en produisant des substituts tissulaires se rapprochant le plus possible des tissus natifs en termes de macro et micro architectures. La bio-impression 3D est une technique d’IT particuliĂšrement prometteuse car elle permet de positionner les Ă©lĂ©ments cellulaires de façon prĂ©cise tout en conservant leur viabilitĂ©. L’objectif de ce travail de recherche Ă©tait donc d’obtenir un tissu mou conjonctif contenant des canaux verticaux et une prĂ©-vascularisation horizontale Ă  l’aide de la bio-impression 3D par extrusion (EBB) dans lequel la viabilitĂ© des cellules serait prĂ©servĂ©e in vitro pendant au moins un mois avec une Ă©tude pour la mise en place d’une application in vivo.MĂ©thodes : Suivant la triade de l’IT cellules/scaffold/molĂ©cules, le modĂšle a Ă©tĂ© construit de la façon suivante : (a) les cellules Ă©taient des fibroblastes gingivaux humains (hGF) issus de cultures primaires d’explants et des cellules endothĂ©liales issues de la veine ombilicale (HUVEC) ; (b) le matĂ©riau (ou scaffold) a Ă©tĂ© sĂ©lectionnĂ© parmi de nombreux hydrogels afin de se rapprocher le plus des propriĂ©tĂ©s mĂ©caniques du tissu tout en autorisant l’impression et la viabilitĂ© des cellules ; (c) aucune molĂ©cule bioactive n’a Ă©tĂ© ajoutĂ©e en dehors de celles dĂ©jĂ  prĂ©sentes dans les milieux de culture et de celles sĂ©crĂ©tĂ©es par les cellules. Deux bio-imprimantes Ă  extrusion ont Ă©tĂ© utilisĂ©es : MultiPrint (IUT de Bordeaux) dans un premier temps pour la prise en main puis 3D Discovery (RegenHU) pour les expĂ©riences in vitro. Les substituts bio-imprimĂ©s ont Ă©tĂ© maintenus en culture pendant 28 jours sans biorĂ©acteur. DiffĂ©rents tests ont Ă©tĂ© effectuĂ©s pour les caractĂ©riser : viabilitĂ© et activitĂ© cellulaire, caractĂ©risation des cellules (cytomĂ©trie en flux et immunocytofluorescence) et quantification des prĂ©-vaisseaux obtenus.RĂ©sultats : AprĂšs avoir dĂ©montrĂ© que les hGF pouvaient ĂȘtre bio-imprimĂ©s par extrusion dans un hydrogel et maintenus vivants en culture dans les substituts, une revue systĂ©matique de la littĂ©rature a Ă©tĂ© ciblĂ©e sur les stratĂ©gies utilisĂ©es en IT orale pour fabriquer des vaisseaux sanguins in vitro. Les techniques les plus utilisĂ©es Ă©taient les co-cultures de cellules stromales et endothĂ©liales en suivant des paramĂštres spĂ©cifiques . La mise au point des cocultures hGF/HUVEC a permis de dĂ©couvrir des propriĂ©tĂ©s de certains fibroblastes qui, au contact des cellules endothĂ©liales, se comportaient comme des cellules pĂ©ri-vasculaires. Ceci a rendu possible l’ organisation et la stabilisation du rĂ©seau d’HUVEC in vitro pendant 30 jours. Enfin, ces co-cultures ont Ă©tĂ© bio-imprimĂ©es dans des formes contenant des canaux verticaux et l’organisation des vaisseaux dans les constructions a Ă©tĂ© suivie dans le temps in vitro avec une proposition de protocole in vivo chez le rongeur.Conclusion : Des substituts conjonctifs contenant des canaux verticaux et un prĂ©-rĂ©seau vasculaire qui se maintient dans le temps sans biorĂ©acteur peuvent ĂȘtre obtenus par EBB. Les propriĂ©tĂ©s pĂ©ri-vasculaires d’une certaine partie des hGF jouent un rĂŽle primordial. Il est dans un premier temps nĂ©cessaire de finir la preuve de l’intĂ©rĂȘt de ces prĂ©-vaisseaux avec des expĂ©rimentations in vivo pour prouver la connexion accĂ©lĂ©rĂ©e et efficace de la construction prĂ©-vascularisĂ©e. Il sera ensuite possible de complexifier le modĂšle en ajoutant d’autres types cellulaires, en modifiant la forme 3D et en travaillant sur le gros animal pour se rapprocher des applications cliniques.Introduction : Even though oral mucosa displays an efficient regenerative potential, tissue loss need a surgical increase of tissue quantity and/or quality. Autologous graft is the gold standard but possesses three major disadvantages : morbidity and limited quantity of tissue among the donor site and a slow vascular connection of the graft to the recipient site. Tissue engineering (TE) could partly help by manufacturing tissue substitutes that mimic native tissues in terms of macro and micro architecture. 3D bioprinting is a particularly promising TE technique because it enables cells positioning into precise patterns while keeping them alive. The aim of this research was to produce a gingival connective tissue substitute that contains vertical channels and a horizontal pre-vascularisation, using extrusion-based bioprinting (EBB). In this substitute, cell viability would be preserved in vitro during at least one month and the development of a protocol for future in vivo applications would be provided.Methods: Based on the TE triad cells/scaffold/molecules, the model was composed with the following features: (a) cells used were human gingival fibroblasts (hGF) from explant primary cultures and human umbilical vein endothelial cells (HUVEC); (b) the scaffold was selected among various hydrogels in order to get the closest to native tissue properties while permitting cell printing and viability; (c) no bioactive molecule was used in addition to those already present in culture media and those secreted by cells. Two extrusion-based bioprinters were used : MultiPrint (Bordeaux IUT) first to get started then 3D Discovery (RgenHU) for in vitro experiments. Bioprinted substitutes were cultivated in vitro during 28 days without bioreactor. Different tests were performed to characterise them: cell viability and activity, cell characterisation (flow cytometry and immunocytochemistry) and preformed vessels quantification.Results: After showing that hGF could be bioprinted by extrusion within a hydrogel and could be kept alive in cultured substitutes, a systematic review of the literature focused on strategies used in oral TE to create blood vessels in vitro. The most reported techniques were cocultures of stromal and endothelial cells following specific parameters. The development of hGF/HUVEC cocultures allowed us to discover unusual properties of some fibroblasts which, when in close contact to HUVEC, displayed a perivascular cell behaviour. This made possible the organisation and stabilisation of the HUVEC network in vitro for 30 days. Finally, these cocultures were bioprinted and vessel organisation within constructions was followed throughout time in vitro and an in vivo protocol for rodents was proposed.Conclusion: Connective substitutes containing a pre-vessel network that remains throughout time without bioreactor were obtained using EBB. Perivascular properties of a part of hGF played a major role. First, it is necessary to finish the proof of concept by performing in vivo experiments in order to prove a faster and more efficient connection to the host vasculature with the pre-vascularised constructs. Then, it could be possible to complexify the substitutes by adding other cell types, modifying the 3D shape and working on bigger animal models to get closer to clinical applications

    Bio‐impression d’un hydrogel cellularisĂ© pour l'obtention de matrices conjonctives lĂąches orales prĂ©-vascularisĂ©es utilisables en ingĂ©nierie tissulaire

    No full text
    Introduction : Even though oral mucosa displays an efficient regenerative potential, tissue loss need a surgical increase of tissue quantity and/or quality. Autologous graft is the gold standard but possesses three major disadvantages : morbidity and limited quantity of tissue among the donor site and a slow vascular connection of the graft to the recipient site. Tissue engineering (TE) could partly help by manufacturing tissue substitutes that mimic native tissues in terms of macro and micro architecture. 3D bioprinting is a particularly promising TE technique because it enables cells positioning into precise patterns while keeping them alive. The aim of this research was to produce a gingival connective tissue substitute that contains vertical channels and a horizontal pre-vascularisation, using extrusion-based bioprinting (EBB). In this substitute, cell viability would be preserved in vitro during at least one month and the development of a protocol for future in vivo applications would be provided.Methods: Based on the TE triad cells/scaffold/molecules, the model was composed with the following features: (a) cells used were human gingival fibroblasts (hGF) from explant primary cultures and human umbilical vein endothelial cells (HUVEC); (b) the scaffold was selected among various hydrogels in order to get the closest to native tissue properties while permitting cell printing and viability; (c) no bioactive molecule was used in addition to those already present in culture media and those secreted by cells. Two extrusion-based bioprinters were used : MultiPrint (Bordeaux IUT) first to get started then 3D Discovery (RgenHU) for in vitro experiments. Bioprinted substitutes were cultivated in vitro during 28 days without bioreactor. Different tests were performed to characterise them: cell viability and activity, cell characterisation (flow cytometry and immunocytochemistry) and preformed vessels quantification.Results: After showing that hGF could be bioprinted by extrusion within a hydrogel and could be kept alive in cultured substitutes, a systematic review of the literature focused on strategies used in oral TE to create blood vessels in vitro. The most reported techniques were cocultures of stromal and endothelial cells following specific parameters. The development of hGF/HUVEC cocultures allowed us to discover unusual properties of some fibroblasts which, when in close contact to HUVEC, displayed a perivascular cell behaviour. This made possible the organisation and stabilisation of the HUVEC network in vitro for 30 days. Finally, these cocultures were bioprinted and vessel organisation within constructions was followed throughout time in vitro and an in vivo protocol for rodents was proposed.Conclusion: Connective substitutes containing a pre-vessel network that remains throughout time without bioreactor were obtained using EBB. Perivascular properties of a part of hGF played a major role. First, it is necessary to finish the proof of concept by performing in vivo experiments in order to prove a faster and more efficient connection to the host vasculature with the pre-vascularised constructs. Then, it could be possible to complexify the substitutes by adding other cell types, modifying the 3D shape and working on bigger animal models to get closer to clinical applications.Introduction : Bien que la muqueuse orale prĂ©sente un potentiel de rĂ©gĂ©nĂ©ration efficace, certaines pertes de substances nĂ©cessitent une augmentation chirurgicale de la quantitĂ© et/ou de la qualitĂ© du tissu. La greffe autologue est la thĂ©rapeutique de rĂ©fĂ©rence mais possĂšde trois inconvĂ©nients majeurs : une morbiditĂ© et une quantitĂ© de tissu limitĂ©e au niveau du site donneur ainsi qu’une connexion vasculaire lente du greffon au niveau du site receveur. L’ingĂ©nierie tissulaire (IT) peut pallier en partie ces problĂ©matiques en produisant des substituts tissulaires se rapprochant le plus possible des tissus natifs en termes de macro et micro architectures. La bio-impression 3D est une technique d’IT particuliĂšrement prometteuse car elle permet de positionner les Ă©lĂ©ments cellulaires de façon prĂ©cise tout en conservant leur viabilitĂ©. L’objectif de ce travail de recherche Ă©tait donc d’obtenir un tissu mou conjonctif contenant des canaux verticaux et une prĂ©-vascularisation horizontale Ă  l’aide de la bio-impression 3D par extrusion (EBB) dans lequel la viabilitĂ© des cellules serait prĂ©servĂ©e in vitro pendant au moins un mois avec une Ă©tude pour la mise en place d’une application in vivo.MĂ©thodes : Suivant la triade de l’IT cellules/scaffold/molĂ©cules, le modĂšle a Ă©tĂ© construit de la façon suivante : (a) les cellules Ă©taient des fibroblastes gingivaux humains (hGF) issus de cultures primaires d’explants et des cellules endothĂ©liales issues de la veine ombilicale (HUVEC) ; (b) le matĂ©riau (ou scaffold) a Ă©tĂ© sĂ©lectionnĂ© parmi de nombreux hydrogels afin de se rapprocher le plus des propriĂ©tĂ©s mĂ©caniques du tissu tout en autorisant l’impression et la viabilitĂ© des cellules ; (c) aucune molĂ©cule bioactive n’a Ă©tĂ© ajoutĂ©e en dehors de celles dĂ©jĂ  prĂ©sentes dans les milieux de culture et de celles sĂ©crĂ©tĂ©es par les cellules. Deux bio-imprimantes Ă  extrusion ont Ă©tĂ© utilisĂ©es : MultiPrint (IUT de Bordeaux) dans un premier temps pour la prise en main puis 3D Discovery (RegenHU) pour les expĂ©riences in vitro. Les substituts bio-imprimĂ©s ont Ă©tĂ© maintenus en culture pendant 28 jours sans biorĂ©acteur. DiffĂ©rents tests ont Ă©tĂ© effectuĂ©s pour les caractĂ©riser : viabilitĂ© et activitĂ© cellulaire, caractĂ©risation des cellules (cytomĂ©trie en flux et immunocytofluorescence) et quantification des prĂ©-vaisseaux obtenus.RĂ©sultats : AprĂšs avoir dĂ©montrĂ© que les hGF pouvaient ĂȘtre bio-imprimĂ©s par extrusion dans un hydrogel et maintenus vivants en culture dans les substituts, une revue systĂ©matique de la littĂ©rature a Ă©tĂ© ciblĂ©e sur les stratĂ©gies utilisĂ©es en IT orale pour fabriquer des vaisseaux sanguins in vitro. Les techniques les plus utilisĂ©es Ă©taient les co-cultures de cellules stromales et endothĂ©liales en suivant des paramĂštres spĂ©cifiques . La mise au point des cocultures hGF/HUVEC a permis de dĂ©couvrir des propriĂ©tĂ©s de certains fibroblastes qui, au contact des cellules endothĂ©liales, se comportaient comme des cellules pĂ©ri-vasculaires. Ceci a rendu possible l’ organisation et la stabilisation du rĂ©seau d’HUVEC in vitro pendant 30 jours. Enfin, ces co-cultures ont Ă©tĂ© bio-imprimĂ©es dans des formes contenant des canaux verticaux et l’organisation des vaisseaux dans les constructions a Ă©tĂ© suivie dans le temps in vitro avec une proposition de protocole in vivo chez le rongeur.Conclusion : Des substituts conjonctifs contenant des canaux verticaux et un prĂ©-rĂ©seau vasculaire qui se maintient dans le temps sans biorĂ©acteur peuvent ĂȘtre obtenus par EBB. Les propriĂ©tĂ©s pĂ©ri-vasculaires d’une certaine partie des hGF jouent un rĂŽle primordial. Il est dans un premier temps nĂ©cessaire de finir la preuve de l’intĂ©rĂȘt de ces prĂ©-vaisseaux avec des expĂ©rimentations in vivo pour prouver la connexion accĂ©lĂ©rĂ©e et efficace de la construction prĂ©-vascularisĂ©e. Il sera ensuite possible de complexifier le modĂšle en ajoutant d’autres types cellulaires, en modifiant la forme 3D et en travaillant sur le gros animal pour se rapprocher des applications cliniques

    Cellularized hydrogel bioprinting to obtain prevascularised oral soft connective tissue scaffolds for tissue engineering

    No full text
    Introduction : Bien que la muqueuse orale prĂ©sente un potentiel de rĂ©gĂ©nĂ©ration efficace, certaines pertes de substances nĂ©cessitent une augmentation chirurgicale de la quantitĂ© et/ou de la qualitĂ© du tissu. La greffe autologue est la thĂ©rapeutique de rĂ©fĂ©rence mais possĂšde trois inconvĂ©nients majeurs : une morbiditĂ© et une quantitĂ© de tissu limitĂ©e au niveau du site donneur ainsi qu’une connexion vasculaire lente du greffon au niveau du site receveur. L’ingĂ©nierie tissulaire (IT) peut pallier en partie ces problĂ©matiques en produisant des substituts tissulaires se rapprochant le plus possible des tissus natifs en termes de macro et micro architectures. La bio-impression 3D est une technique d’IT particuliĂšrement prometteuse car elle permet de positionner les Ă©lĂ©ments cellulaires de façon prĂ©cise tout en conservant leur viabilitĂ©. L’objectif de ce travail de recherche Ă©tait donc d’obtenir un tissu mou conjonctif contenant des canaux verticaux et une prĂ©-vascularisation horizontale Ă  l’aide de la bio-impression 3D par extrusion (EBB) dans lequel la viabilitĂ© des cellules serait prĂ©servĂ©e in vitro pendant au moins un mois avec une Ă©tude pour la mise en place d’une application in vivo.MĂ©thodes : Suivant la triade de l’IT cellules/scaffold/molĂ©cules, le modĂšle a Ă©tĂ© construit de la façon suivante : (a) les cellules Ă©taient des fibroblastes gingivaux humains (hGF) issus de cultures primaires d’explants et des cellules endothĂ©liales issues de la veine ombilicale (HUVEC) ; (b) le matĂ©riau (ou scaffold) a Ă©tĂ© sĂ©lectionnĂ© parmi de nombreux hydrogels afin de se rapprocher le plus des propriĂ©tĂ©s mĂ©caniques du tissu tout en autorisant l’impression et la viabilitĂ© des cellules ; (c) aucune molĂ©cule bioactive n’a Ă©tĂ© ajoutĂ©e en dehors de celles dĂ©jĂ  prĂ©sentes dans les milieux de culture et de celles sĂ©crĂ©tĂ©es par les cellules. Deux bio-imprimantes Ă  extrusion ont Ă©tĂ© utilisĂ©es : MultiPrint (IUT de Bordeaux) dans un premier temps pour la prise en main puis 3D Discovery (RegenHU) pour les expĂ©riences in vitro. Les substituts bio-imprimĂ©s ont Ă©tĂ© maintenus en culture pendant 28 jours sans biorĂ©acteur. DiffĂ©rents tests ont Ă©tĂ© effectuĂ©s pour les caractĂ©riser : viabilitĂ© et activitĂ© cellulaire, caractĂ©risation des cellules (cytomĂ©trie en flux et immunocytofluorescence) et quantification des prĂ©-vaisseaux obtenus.RĂ©sultats : AprĂšs avoir dĂ©montrĂ© que les hGF pouvaient ĂȘtre bio-imprimĂ©s par extrusion dans un hydrogel et maintenus vivants en culture dans les substituts, une revue systĂ©matique de la littĂ©rature a Ă©tĂ© ciblĂ©e sur les stratĂ©gies utilisĂ©es en IT orale pour fabriquer des vaisseaux sanguins in vitro. Les techniques les plus utilisĂ©es Ă©taient les co-cultures de cellules stromales et endothĂ©liales en suivant des paramĂštres spĂ©cifiques . La mise au point des cocultures hGF/HUVEC a permis de dĂ©couvrir des propriĂ©tĂ©s de certains fibroblastes qui, au contact des cellules endothĂ©liales, se comportaient comme des cellules pĂ©ri-vasculaires. Ceci a rendu possible l’ organisation et la stabilisation du rĂ©seau d’HUVEC in vitro pendant 30 jours. Enfin, ces co-cultures ont Ă©tĂ© bio-imprimĂ©es dans des formes contenant des canaux verticaux et l’organisation des vaisseaux dans les constructions a Ă©tĂ© suivie dans le temps in vitro avec une proposition de protocole in vivo chez le rongeur.Conclusion : Des substituts conjonctifs contenant des canaux verticaux et un prĂ©-rĂ©seau vasculaire qui se maintient dans le temps sans biorĂ©acteur peuvent ĂȘtre obtenus par EBB. Les propriĂ©tĂ©s pĂ©ri-vasculaires d’une certaine partie des hGF jouent un rĂŽle primordial. Il est dans un premier temps nĂ©cessaire de finir la preuve de l’intĂ©rĂȘt de ces prĂ©-vaisseaux avec des expĂ©rimentations in vivo pour prouver la connexion accĂ©lĂ©rĂ©e et efficace de la construction prĂ©-vascularisĂ©e. Il sera ensuite possible de complexifier le modĂšle en ajoutant d’autres types cellulaires, en modifiant la forme 3D et en travaillant sur le gros animal pour se rapprocher des applications cliniques.Introduction : Even though oral mucosa displays an efficient regenerative potential, tissue loss need a surgical increase of tissue quantity and/or quality. Autologous graft is the gold standard but possesses three major disadvantages : morbidity and limited quantity of tissue among the donor site and a slow vascular connection of the graft to the recipient site. Tissue engineering (TE) could partly help by manufacturing tissue substitutes that mimic native tissues in terms of macro and micro architecture. 3D bioprinting is a particularly promising TE technique because it enables cells positioning into precise patterns while keeping them alive. The aim of this research was to produce a gingival connective tissue substitute that contains vertical channels and a horizontal pre-vascularisation, using extrusion-based bioprinting (EBB). In this substitute, cell viability would be preserved in vitro during at least one month and the development of a protocol for future in vivo applications would be provided.Methods: Based on the TE triad cells/scaffold/molecules, the model was composed with the following features: (a) cells used were human gingival fibroblasts (hGF) from explant primary cultures and human umbilical vein endothelial cells (HUVEC); (b) the scaffold was selected among various hydrogels in order to get the closest to native tissue properties while permitting cell printing and viability; (c) no bioactive molecule was used in addition to those already present in culture media and those secreted by cells. Two extrusion-based bioprinters were used : MultiPrint (Bordeaux IUT) first to get started then 3D Discovery (RgenHU) for in vitro experiments. Bioprinted substitutes were cultivated in vitro during 28 days without bioreactor. Different tests were performed to characterise them: cell viability and activity, cell characterisation (flow cytometry and immunocytochemistry) and preformed vessels quantification.Results: After showing that hGF could be bioprinted by extrusion within a hydrogel and could be kept alive in cultured substitutes, a systematic review of the literature focused on strategies used in oral TE to create blood vessels in vitro. The most reported techniques were cocultures of stromal and endothelial cells following specific parameters. The development of hGF/HUVEC cocultures allowed us to discover unusual properties of some fibroblasts which, when in close contact to HUVEC, displayed a perivascular cell behaviour. This made possible the organisation and stabilisation of the HUVEC network in vitro for 30 days. Finally, these cocultures were bioprinted and vessel organisation within constructions was followed throughout time in vitro and an in vivo protocol for rodents was proposed.Conclusion: Connective substitutes containing a pre-vessel network that remains throughout time without bioreactor were obtained using EBB. Perivascular properties of a part of hGF played a major role. First, it is necessary to finish the proof of concept by performing in vivo experiments in order to prove a faster and more efficient connection to the host vasculature with the pre-vascularised constructs. Then, it could be possible to complexify the substitutes by adding other cell types, modifying the 3D shape and working on bigger animal models to get closer to clinical applications

    Tissue Eng Regen Med

    No full text
    Background:Cocultures of human gingival fibrobasts (hGF) and endothelial cells could enhance regeneration and repair models as well as improve vascularization limitations in tissue engineering. The aim of this study was to assess if hGF could support formation of stable vessel-like networks. Methods:Explant primary hGF were isolated from gum surgical wastes collected from healthy patients with no history of periodontitis. Human umbilical vein endothelial cells (HUVEC) were two-dimensional (2D) and three-dimensional (3D) cocultured in vitro with hGF at a cell ratio of 1:1 and medium of 1:1 of their respective media during at least 31 days. Vessel quantification of HUVEC networks was performed. In order to investigate the pericyte-like properties of hGF, the expression of perivascular markers α-SMA, NG2, CD146 and PDGFR-ÎČ was studied using immunocytochemistry and flow cytometry on 2D cultures. Results:hGF were able to support a long-lasting HUVEC network at least 31 days, even in the absence of a bioreactor with flow. As observed, HUVEC started to communicate with each other from day 7, constructing a network. Their interconnection increased significantly between day 2 and day 21 and lasted beyond the 31 days of observation. Moreover, we tried to explain the stability of the networks obtained and showed that a small population of hGF in close vicinity of HUVEC networks expressed perivascular markers. Conclusion:These findings highlight a new interesting property concerning hGF, accentuating their relevance in tissue engineering and periodontal regeneration. These promising results need to be confirmed using more 3D applications and in vivo testing

    Cybergology and bioprinting: The biotechnological future of maxillofacial rehabilitation

    No full text
    International audienceMaxillofacial prostheses now benefit from the growing advances in converging technologies, such as nanotechnologies, biotechnologies, informatics and cognitivism (NBIC). Instead of being laid and passive, prostheses can now ensure true neurophysiological interactions with their wearers through complex phenomena of hybridization and vicariance. These new devices get closer to "maxillofacial amplification prostheses", by improving the world perception through restored sensory properties and new extra-sensory properties. These technological devices also benefit from the bioengineering revolution that will soon allow the bioprinting of graft prostheses with an intimate integration to the organic maxillofacial support. In this article, the authors would like to present some major advances in cybergology and bio-printing in maxillofacial hybridization contexts

    Étude de faisabilitĂ© d’un greffon biofabriquĂ© pour traiter des rĂ©cessions parodontales

    No full text
    Introduction : L’ingĂ©nierie tissulaire permet d’envisager de nouvelles thĂ©rapeutiques pour le traitement des rĂ©cessions gingivales. Cette Ă©tude de faisabilitĂ© proposait un protocole et une chronologie pour la biofabrication de greffons parodontaux sur mesure palliant ces dĂ©fauts. Technique : L’impression d’une matrice en hydrogel collagĂ©nique a Ă©tĂ© rĂ©alisĂ©e grĂące Ă  un systĂšme d’éjection piĂ©zoĂ©lectrique MicrodropÂź. La mise au point des conditions optimales d’impression a Ă©tĂ© dĂ©terminĂ©e en fabriquant des Ă©chantillons de dimension et de morphologie compatibles avec une application clinique. L’ensemencement cellulaire de matrices a Ă©tĂ© rĂ©alisĂ© par bioimpression assistĂ©e par laser, et la viabilitĂ© cellulaire post-impression testĂ©e. L’impression d’une matrice a Ă©tĂ© directement rĂ©alisĂ©e sur les membranes de collagĂšne prĂ©fabriquĂ©es pour Ă©valuer la facilitĂ© de manipulation du greffon. Les matrices obtenues ont la forme souhaitĂ©e, les cellules sont viables, et le greffon est aisĂ©ment manipulable et suturable. Commentaires : L’impression de la matrice permet de choisir l’épaisseur du greffon. Il est attendu in vivo que l’organisation spatiale des fibroblastes au sein des greffons permette d’augmenter la rĂ©sistance mĂ©canique et l’esthĂ©tique des greffes parodontales. Conclusion : Cette Ă©tude de faisabilitĂ© prĂ©liminaire a permis de poser le concept. D’autres Ă©tudes seront nĂ©cessaires pour Ă©tudier le remodelage du greffon in vitro et in vivo

    A Bibliometric Study to Assess Bioprinting Evolution

    No full text
    Bioprinting as a tissue engineering tool is one of the most promising technologies for overcoming organ shortage. However, the spread of populist articles among on this technology could potentially lead public opinion to idealize its readiness. This bibliometric study aimed to trace the evolution of bioprinting literature over the past decade (i.e., 2000 to 2015) using the SCI-expanded database of Web of Science¼ (WoS, Thomson Reuters). The articles were analyzed by combining various bibliometric tools, such as science mapping and topic analysis, and a Technology Readiness Scale was adapted to assess the evolution of this emerging field. The number of analyzed publications was low (231), but the literature grew exceptionally fast. The “Engineering, Biomedical” was still the most represented WoS category. Some of the recent fronts were “hydrogels” and “stem cells”, while “in vitro” remained one of the most used keywords. The number of countries and journals involved in bioprinting literature grew substantially in one decade, also supporting the idea of an increasing community. Neither the United States’ leadership in bioprinting productivity nor the role of universities in publications were challenged. “Biofabrication” and “Biomaterials” journals were still the leaders of the bioprinting field. Bioprinting is a young but promising technology

    Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication

    No full text
    One of the greatest challenges in the field of biofabrication remains the discovery of suitable bioinks that satisfy physicochemical and biological requirements. Despite recent advances in tissue engineering and biofabrication, progress has been limited to the development of technologies using polymer-based materials. Here, we show that a nucleotide lipid-based hydrogel resulting from the self-assembly of nucleotide lipids can be used as a bioink for soft tissue reconstruction using injection or extrusion-based systems. To the best of our knowledge, the use of a low molecular weight hydrogel as an alternative to polymeric bioinks is a novel concept in biofabrication and 3D bioprinting. Rheological studies revealed that nucleotide lipid-based hydrogels exhibit suitable mechanical properties for biofabrication and 3D bioprinting, including i) fast gelation kinetics in a cell culture medium and ii) shear moduli and thixotropy compatible with extruded oral cell survival (human gingival fibroblasts and stem cells from the apical papilla). This polymer-free soft material is a promising candidate for a new bioink design
    corecore