403 research outputs found

    The mass balance of a cirque glacier in the Italian Alps (Ghiacciaio della Sforzellina, Ortles-Cevedale Group)

    Get PDF
    Abstract The net mass balance (1986/87–1989/90) was calculated for a small cirque glacier in the Italian Alps (Ghiacciaio della Sforzellina, 0.42 k m2, Ortles–Cevedale Group). Four annual mass balances are presented here. All four balances were negative (mean value: –0.90 m year−1), with a maximum deficit of –1.16 m year−1 in 1989–90. The climatic conditions (which are analyzed using data from the S. Caterina Valfurva Station) consisted of a succession of cold, dry winters with little snowfall. Frontal-variation data available since 1925 show a constant retreat until 1966, followed by a brief advance period which has already terminated

    The mass balance of a cirque glacier in the Italian Alps (Ghiacciaio della Sforzellina, Ortles-Cevedale Group)

    Get PDF
    AbstractThe net mass balance (1986/87–1989/90) was calculated for a small cirque glacier in the Italian Alps (Ghiacciaio della Sforzellina, 0.42 k m2, Ortles–Cevedale Group). Four annual mass balances are presented here. All four balances were negative (mean value: –0.90 m year−1), with a maximum deficit of –1.16 m year−1 in 1989–90. The climatic conditions (which are analyzed using data from the S. Caterina Valfurva Station) consisted of a succession of cold, dry winters with little snowfall. Frontal-variation data available since 1925 show a constant retreat until 1966, followed by a brief advance period which has already terminated

    Assessment and selection of geomorphosites and trails in the Miage Glacier Area (Western Italian Alps)

    Get PDF
    Glacial environments are considered geomorphosites because they exhibit all of the features that characterise sites of geomorphological interest. The Miage Glacier, in particular, is the most important debris-covered glacier of the Italian Alps, and it has been extensively studied since the 18th century because of its scientific features. In this area, the geomorphological and geological attributes are evaluated at 11 sites that have been individuated along the three main touristic trails, which allow an exploration of the surroundings of the glacial tongue and its two main lobes. Using a methodology previously tested in a fluvial environment, single sites and trails are quantitatively assessed to determine the most suitable trail for educational purposes. Hazards that could potentially affect the trails are considered in terms of both risk education and final selection of the most suitable trails for the various possible user groups. The richness of scientific data in this area should increase its importance as a geomorphosite by increasing the educational value of the Miage Glacier and the Veny Valley

    Recent variations of a debris-covered glacier (Brenva glacier) in the Italian Alps monitored by comparison of maps and digital orthophotos

    Get PDF
    Debris-covered glaciers are widespread in the mountain chains of Asia. They are also particularly common in New Zealand , in the Andes and in Alaska. Despite their relatively common occurrence, debris-covered glaciers have not been well studied. A debris cover that partially or completely masks the glacier ablation zone significantly influences the surface energy flux, the ablation rate and the discharge of meltwater streams. A multi-temporal analysis based on photogrammetry methodologies was used to assess changes volume and ablation rates

    ACCELERATING CLIMATE CHANGE IMPACTS ON ALPINE GLACIER FOREFIELD ECOSYSTEMS IN THE EUROPEAN ALPS

    Get PDF
    In the European Alps the increase in air temperature was more than twice the increase in global mean temperature over the last 50 years. The abiotic ( glacial) and the biotic components ( plants and vegetation) of the mountain environment are showing ample evidence of climate change impacts. In the Alps most small glaciers (80% of total glacial coverage and an important contribution to water resources) could disappear in the next decades. Recently climate change was demonstrated to affect higher levels of ecological systems, with vegetation exhibiting surface area changes, indicating that alpine and nival vegetation may be able to respond in a fast and flexible way in response to 1-2 degrees C warming. We analyzed the glacier evolution ( terminus fluctuations, mass balances, surface area variations), local climate, and vegetation succession on the forefield of Sforzellina Glacier ( Upper Valtellina, central Italian Alps) over the past three decades. We aimed to quantify the impacts of climate change on coupled biotic and abiotic components of high alpine ecosystems, to verify if an acceleration was occurring on them during the last decade (i.e., 1996-2006) and to assess whether new specific strategies were adopted for plant colonization and development. All the glaciological data indicate that a glacial retreat and shrinkage occurred and was much stronger after 2002 than during the last 35 years. Vegetation started to colonize surfaces deglaciated for only one year, with a rate at least four times greater than that reported in the literature for the establishment of scattered individuals and about two times greater for the well-established discontinuous early-successional community. The colonization strategy changed: the first colonizers are early-successional, scree slopes, and perennial clonal species with high phenotypic plasticity rather than pioneer and snowbed species. This impressive acceleration coincided with only slight local summer warming ( approximately +0.5 degrees C) and a poorly documented local decrease in the snow cover depth and duration. Are we facing accelerated ecological responses to climatic changes and/or did we go beyond a threshold over which major ecosystem changes may occur in response to even minor climatic variations?

    Recent (1975-2003) changes in the Miage debris covere glacier tongue (Mont Blanc, Italy) from analysis of aerial photos and maps

    Get PDF
    The present study aims at identifying any changes in volume and thickness of the Miage Glacier tongue (Mont Blanc Massif, Italy) during the period 1975-2003. The Miage glacier developed the largest part of its debris cover over the last century, now found mostly between the glacier terminus (about 1850 m a.s.l.) and the upper ablation tongue (c. 2400 m a.s.l.) on a surface area of c. 4 km 2 The period examined (1975-2003) addresses climate conditions which were glacier-favourable (around the . 1980s), as well as glacier-unfavourable (since the early to mid-1990s), thus contributing to an understanding of the behaviour of debris covered glaciers under a changing climate. The analysis was based on the comparison between digital elevation models (DEMs), derived from historical records, specifically maps (1975; scale 1:10,000) and photogrammetric surveys (1991 and 2003, scale 1:15,000). The results show a general glacier volume loss (\u201316.640 x 10 6 m 3 ( from 1975 to 2003; nevertheless if we focus on the two time sub-windows (i.e.: 1975-1991 and 1991-2003) opposite trends are found: in the period 1975-1991 the volume variation of the Miage Glacier was about +19.25 710 6 m 3 , in the period 1991-2003, on the other hand, a volume decrease of about \u201336.2 710 6 m 3 occurred. Analysis shows that volume changes were strongly influenced by the supraglacial debris coverage which on Miage glacier tongue modulates the magnitude and rates of buried ice ablation

    Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan

    Get PDF
    AbstractBaltoro glacier in the Karakoram, Pakistan, is one of the world's largest valley glaciers. It drains an area of about 1500 km2 and is >60km long. In 2004 an Italian/German expedition carried out a glaciological field program on the ablation zone of the glacier, focusing on the ablation conditions and the dynamic state of the glacier. As Baltoro glacier is a debris-covered glacier, ice ablation also depends on the debris properties. Stake measurements of ice ablation and debris cover in combination with meteorological data from automatic weather stations close by have been used to determine the local melt conditions. Results from these calculations have been combined with an analysis of different classes of surface cover and information about precipitation, using remote-sensing techniques, in order to calculate mass fluxes for the upper part of Baltoro glacier. The dynamic state of the glacier has been investigated by GPS-based surface velocity measurements along the stake network. A comparison of these short-term measurements during the melt season with surface velocities computed from feature tracking of satellite images shows a high seasonal variability of the ice motion. We have shown that this variability is up to 100% of the annual mean velocity. On the basis of these investigations, the mass fluxes at the Concordia cross-section have been quantified. This approach can now be used together with the ablation calculations to reconstruct the variability of glacier extent and volume in the past using available climate data from the central Karakoram. From the comparison of historical measurements and photographs it is shown that the snout of Baltoro glacier is oscillating back and forth a couple of hundred metres. Otherwise it seems not to react with the same magnitude as other glaciers to the climatic change. Elevation changes at Concordia are a few tens of metres at the most

    Distribution of the surface energy budget: Preliminary analysis on the incoming solar radiation. the case study of the Forni Glacier (Italy)

    Get PDF
    This study represents a contribution to distribution of the surface energy budget of the Forni Glacier (Ortles-Cevedale Group, Upper Valtellina, Italy). The analyses are based on data acquired at S. Caterina Valfurva (a village in the glacier valley at 1768 m ellipsoidal elevation WGS84) by an Automatic Weather Station (AWS) installed and managed by the Lombardy Agency for the Environment ("ARPA Lombardia"). We focus on the two most important meteorological parameters affecting surface energy budget: air temperature (T) and incoming shortwave radiation (SWin). Data collected from the ARPA AWS are used to evaluate these parameters at the glacier surface during the meteorological summer 2009 (from 1st June to 31st August 2009) and then the computations are validated through comparison with data recorded by an AWS installed at the surface of Forni Glacier tongue ("AWS1 Forni", 2669 m ellipsoidal elevation WGS84). The analysis of the distributed air temperature data enabled identification of the lowest value (-11.9 degrees C), found at the Mount S. Matteo peak (3669 m) on 22nd June at 8: 00 pm, and the highest value (+16.1 degrees C), recorded at the glacier terminus (2497 m) on 23 rd July at 2: 00 pm. The seasonal temperature amplitude (Tmax-Tmin) was 28 degrees C. The hottest week was 20th-26th July 2009 and the coldest was 1st-7th June 2009. Regarding daily SWin distribution, the maximum value (406.9 Wm(-2)) was recorded on 13th June and the minimum (28.5 Wm(-2)) on 6th June. From the analysis of hourly SWin values we could distinguish between days with clear sky conditions and days with intense cloud cover. Weekly mean SWin data showed the greatest value (327.1 Wm(-2)) from 20th-26th July 2009 and the lowest (207.8 Wm(-2)) from 22nd-28th June 2009. Furthermore, in analysing SWin it is critical to take into account the problem of shading. Using the Hillshade tool of ArcGIS, which takes into account only the slope and the aspect of each grid cell neglecting the surrounding topography effect, we compiled 66 shadow maps. Finally this study represents a first approach in modelling the distributed incoming solar radiation. In fact the considered driving factors are the elevation, the slope and the aspect of each grid cell. The next step will consist in taking into account the surrounding topography and the actual atmosphere conditions as well

    Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    Get PDF
    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km<sup>2</sup>), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. <br><br> The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050–2059 from <i>CCSM3</i> model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change

    The impact of supraglacial debris on proglacial runoff and water chemistry

    Get PDF
    Debris is known to influence the ablation, topography and hydrological systems of glaciers. This paper determines for the first time how these influences impact on bulk water routing and the proglacial runoff signal, using analyses of supraglacial and proglacial water chemistry and proglacial discharge at Miage Glacier, Italian Alps. Debris does influence the supraglacial water chemistry, but the inefficient subglacial system beneath the debris-covered zone also plays a role in increasing the ion contribution to the proglacial stream. Daily hydrographs had a lower amplitude and later discharge peak compared to clean glaciers and fewer diurnal hydrographs were found compared to similar analysis for Haut Glacier d’Arolla. We attribute these observations to the attenuating effect of the debris on ablation, smaller input streams on the debris-covered area, a less efficient subglacial system, and possible leakage into a raised sediment bed beneath the glacier. Strongly diurnal hydrographs are constrained to periods with warmer than average conditions. ‘Average’ weather conditions result in a hydrograph with reverse asymmetry. Conductivity and discharge commonly show anti-clockwise hysteresis, suggesting the more dilute, rapidly-routed melt component from the mid-glacier peaks before the discharge peak, with components from higher up-glacier and the debris-covered areas arriving later at the proglacial stream. The results of this study could lead to a greater understanding of the hydrological structure of other debris-covered glaciers, with findings highlighting the need to include the influence of the debris cover within future models of debris-covered glacier runoff
    • …
    corecore