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Abstract. In the European Alps the increase in air temperature was more than twice the
increase in global mean temperature over the last 50 years. The abiotic (glacial) and the biotic
components (plants and vegetation) of the mountain environment are showing ample evidence
of climate change impacts. In the Alps most small glaciers (80% of total glacial coverage and
an important contribution to water resources) could disappear in the next decades.

Recently climate change was demonstrated to affect higher levels of ecological systems,
with vegetation exhibiting surface area changes, indicating that alpine and nival vegetation
may be able to respond in a fast and flexible way in response to 1–28C warming.

We analyzed the glacier evolution (terminus fluctuations, mass balances, surface area
variations), local climate, and vegetation succession on the forefield of Sforzellina Glacier
(Upper Valtellina, central Italian Alps) over the past three decades. We aimed to quantify the
impacts of climate change on coupled biotic and abiotic components of high alpine
ecosystems, to verify if an acceleration was occurring on them during the last decade (i.e.,
1996–2006) and to assess whether new specific strategies were adopted for plant colonization
and development.

All the glaciological data indicate that a glacial retreat and shrinkage occurred and was
much stronger after 2002 than during the last 35 years. Vegetation started to colonize surfaces
deglaciated for only one year, with a rate at least four times greater than that reported in the
literature for the establishment of scattered individuals and about two times greater for the
well-established discontinuous early-successional community. The colonization strategy
changed: the first colonizers are early-successional, scree slopes, and perennial clonal species
with high phenotypic plasticity rather than pioneer and snowbed species.

This impressive acceleration coincided with only slight local summer warming (approx-
imately þ0.58C) and a poorly documented local decrease in the snow cover depth and
duration. Are we facing accelerated ecological responses to climatic changes and/or did we go
beyond a threshold over which major ecosystem changes may occur in response to even minor
climatic variations?

Key words: alpine glaciers; climate warming; clonal plants; colonization strategies; Italian Alps;
mountain ecosystems; Sforzellina Glacier; vegetation.

INTRODUCTION

The increasing recession of the cryosphere in the Alps

is probably related to important changes occurring in

mid-tropospheric conditions, such as the widely recog-

nized rapid increase in temperature during recent

decades (IPCC 2001). The worldwide retreat of glaciers,

from alpine areas (Haeberli and Beniston 1998) to

Antarctica (Rott et al. 1996, Cook et al. 2005), in the

course of the last few decades, is frequently mentioned

as a clear and unambiguous sign of global warming

(Oerlemans 2005). Compared with other climate indica-

tors like tree rings, glacial systems react in a relatively

simple way to climate change: the transfer function does

not change in time and geometric effects can be

addressed. Likewise, as many glaciers are found at high

elevations, a climate signal reflected in glacier fluctua-

tions can be studied as a function of height (Oerlemans

2005).

In the Alps atmospheric warming was found to

increase more than double over the same period (Böhm

et al. 2001), with a significant summer warming, which

was particularly severe since 1970 (Casty et al. 2005). As

a result of this rapid climate evolution, many small

glaciers (i.e., glaciers with surface area ,1 km2) located

at mid-elevation could disappear in the next few

decades. These small glaciers are common in the Alps,

where they represent 80% of total glacial coverage and

make an important contribution to water resources

(Oerlemans and Fortuin 1992).

The rapid ‘‘disintegration’’ of alpine glaciers has

already been pointed out in an analysis of the Swiss

Glacier Inventory 2000 by Paul et al. (2004). Among the
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others, smaller glaciers were found to show both a wider

scatter of variation with respect to the larger ones, and

to contribute more than proportionally to the area they

represent. In fact, 44% of the area loss between 1973 and

1998/1999 refers to glaciers of lengths of ,1 km and

covering only 18% of the total area in 1973 (Paul et al.

2004). Thus small glaciers are showing higher sensitivity

than larger ones due to their very fast reaction time

(sensu Haeberli and Hoelzle 1995) and are, hence,

suitable sites for assessment and monitoring of climate

change impacts (Dyurgerov and Meier 2000). Moreover,

at high elevations temperature, moisture, and pressure

trends and anomalies are clearer than at lower levels,

where the large-scale climate signals tend to be

dampened (Beniston 2000, 2003). Also soil characteris-

tics of the glacier forefield were used as climate change

indicators (i.e., Egli et al. 2006).

Not only the abiotic (glacial) but also the biotic

components (plants and vegetation) of the mountain

environment are showing ample evidence of climate

change impacts (e.g., Grabherr et al. 1994, Beniston et

al. 1997, Beniston 2003, Walther et al. 2005, Cannone et

al. 2007). According to quantitative estimates of the

biological impacts of the climate change ‘‘fingerprint,’’ a

greater amplitude is expected at high latitudes and

altitudes (Root et al. 2003). In the Alps, the shifts in the

altitudinal range margins of plant species and biocli-

matic zones in the last 50 years, with upward migration

of alpine and nival-plant species at a rate of 8–10 m per

decade (Grabherr et al. 1994, Walther et al. 2005), and

changes in community composition (Keller et al. 2000)

provide the first evidence of the sensitivity of mountain

habitats to climatic change.

Surface area changes of the vegetation in a high alpine

site of the European Alps between 1953 and 2003

demonstrated that climate change is able to affect higher

levels of ecological systems and that even 1–28C warming

of air temperature may produce significant changes in

vegetation community dynamics (Cannone et al. 2007). As

these changes follow the sudden warming of summer and

annual temperatures after 1980, these results suggest that

alpine and nival vegetation may respond faster and more

flexibly to climatic change than previously believed (Pauli

et al. 1999, Walther et al. 2005).

Glacier forefields are suitable environments to investi-

gate the processes of vegetation colonization and devel-

opment and, because of the age control of the surfaces, to

calculate the speed of primary succession and to

understand their mechanisms (e.g., Whittaker 1993,

Chapin et al. 1994). In the European Alps several authors

have investigated glacial chronosequences and described

different stages of vegetation succession from pioneer to

climax communities in relation to site age (e.g., Pirola and

Credaro 1993, 1994, Burga 1999, Caccianiga and Andreis

2004, Raffl and Erschbamer 2004) and to the mechanisms

of seedling establishment (e.g., Stöcklin and Bäumler

1996, Niederfriniger Schlag and Erschbamer 2000).

Moreover, in high mountain areas, most glacial forefields

provide environments subject only to natural dynamics,

without direct anthropogenic impacts, where it is possible

to compare the responses of related environmental

components (glaciers and vegetation) to the same climatic

inputs and to quantify their variations in response to

climate changes.

The aim of our research was to quantify the biotic and

abiotic impacts of climate change over the past three

decades in an alpine glacier area without direct

anthropogenic impacts, to verify if an acceleration has

been occurring on them during the last decade (i.e.,

1996–2006), and to assess whether new specific strategies

were adopted for plant colonization and development.

For this purpose we analyzed the patterns and rate of

glacier evolution (abiotic component) and vegetation

succession (biotic component) on the forefield of Sforzel-

lina Glacier (Upper Valtellina, central Italian Alps).

STUDY AREA

The Sforzellina Glacier is a southwest-facing cirque

glacier extending from 2850 to 3100 m above sea level

(a.s.l.; 4682005500 N, 1083005000 E), located in Valfurva

Valley (Upper Valtellina), in the central Italian Alps.

The glacial forefield extends between 2850 and 2700 m

a.s.l., and it is characterized by surfaces with different

ages since deglaciation, ranging from one year to .80

years, while undisturbed by periglacial features such as

sorted or unsorted polygons. Only a few not well-

developed terracettes and solifluction lobes occur on the

northeast-facing slope of the moraine ridge deposited at

the beginning of the 20th century (1920–1925) on the

southern border of the glacier.

Sforzellina Glacier represents a unique case of

glaciological study in Italy because it has one of the

older and more continuous records of terminus fluctu-

ations (1925 to today) and mass balance (1987 to today).

It is also one of the few glaciers of which there is

relatively good knowledge of its thickness and geometry.

On Sforzellina Glacier different geophysical surveys

were applied in order to evaluate ice thickness and

bedrock morphology. Geoelectrical survey (VES [verti-

cal electrical sounding]; Resnati and Smiraglia 1989,

Guglielmin et al. 1995) and seismic reflection (Pavan et

al. 2000) gave a maximum ice thickness of 42 and 60 m,

respectively. In 1999 a ground probing radar (GPR)

survey was performed to obtain high-resolution topog-

raphy of the glacier bed. The maximum ice thickness

calculated was of ;60 m in the central area of the glacier

and this value agrees with seismic data. In addition,

geomorphological surveys were also performed (Rossi et

al. 2003) to map the glacial landforms related to past

glacial evolution.

The study area is included in the upper alpine belt

(2600–2800 m a.s.l.) and in the nival belt (.2800 m

a.s.l.). The vegetation is a mosaic of discontinuous

alpine grasslands (including the climax communities

dominated by Carex curvula and the initial grasslands

dominated by Poa alpina), snowbed vegetation (with
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Salix herbacea, Veronica alpina, Sagina saginoides,

Cerastium cerastioides), pioneer and early-successional
communities (with Ranunculus glacialis, Geum reptans,

Cerastium uniflorum, Oxyria digyna, Saxifraga bryoides),
and, at the higher altitudes, scattered individuals of

vascular plants and cryptogams (see Plate 1). At the
elevations of our site, the effects of anthropogenic land
use change on vegetation are mostly negligible (Keller et

al. 2005). Previous studies on the glacier forefield of the
Sforzellina Glacier were carried out by Caccianiga and

Andreis (2004) reporting the occurrence of a pioneer
community (Sieversio-Oxyrietum digynae) with Cerasti-

um uniflorum, Geum reptans, Oxyria digyna, Ranunculus
glacialis, and Poa laxa on the 1980s morainic ridge and

of the initial grassland dominated by Poa laxa and
Saxifraga bryoides on the Little Ice Age moraine.

MATERIAL AND METHODS

Glacier monitoring

Recent (last three decades) glacial changes were

reconstructed using all the available sources of data.
Terminus fluctuations were analyzed from 1971 up to

now, in order to evaluate the glacier’s behavior (i.e.,
retreat vs. advance), and to calculate the rates of these

changes. These data have been collected from bench-
marks located on the glacier forefield without interrup-

tions, providing a data set on the glacier’s evolution for
the last 35 years (CGI 1971–1977, 1978–2006). In 1991

the benchmark used for the terminus variation mea-
surements changed and the new one was set at ;80 m

(with an azimuth of 1458 N) from the present (summer
2006) glacier limit.

Mass balances were evaluated from the authors
(Catasta and Smiraglia 1993) from 1987 up to now using

the standard glaciological method (Østrem and Brugman
1989, Kaser et al. 2003) based on a network of ablation

stakes at different altitudes. Several differential global
positioning system (DGPS) campaigns were performed

with kinematic techniques aimed at obtaining digital
elevation models (DEM) of the glacier surface and
altimetry (in 1999, 2000, 2002) as well as to map the GPR

profiles. The fast static technique was employed on
DGPS surveys that focused on delimiting the glacier

boundaries or on mapping moraine ridge positions
(requiring fewer points, in 2002, 2003, 2006). DGPS

surveys were also used to acquire the position of the
benchmark used to measure the glacier terminus

fluctuations from 1991 up to now and map the moraines
of the 1920s and 1980s, which served to reconstruct the

older and recent glacier advances, as well as to map
supraglacial debris cover and the vegetation survey plots.

The DGPS surveys were always carried out at the end
of the summer season, when the ablation zone is largest

and no snow is present on the glacier snout. To obtain
DEMs of the glacier surface and bedrock morphology

(from GPR data), the field surveys were carried out
using high density global positioning system (GPS)

point data (i.e., 8000 points/km2) and interpolating the

data with the kriging algorithm. In addition, several

nodes with known coordinates were positioned near the

glaciers to improve the accuracy of the measurements

taken by differential GPS with short bases according to

Diolaiuti et al. (2004).

The glacier limits dating back to 2002, 2003, and 2006

were mapped on the field by DGPS surveys, and the

1920 and 1980 limits were reconstructed by the moraine

ridge boundary marked on the field by DGPS as well.

The glacier limits from 1991 to 2001 were reconstructed

by a geographic information system (GIS) using the

measured fluctuation data and the position of the 1991

benchmark used for measuring the distance from the

glacier snout. Orthophotos dating back to 1999 and

2003 (Regione Lombardia 2004) were also used to map

the glacier boundaries. GIS mapping was applied not

only to past glacier limits but also to assign different

ages to the land surfaces on the glacier forefield (1991–

2001). All the vegetation plots were located by DGPS

and included in the GIS mapping, allowing the

vegetation covering of these areas to also be dated.

Surface area changes were determined by GIS through

the comparison of the historical glacier boundaries thus

obtained. The final planar accuracy value was then

evaluated according to Vögtle and Schilling (1999).

Vegetation survey

The vegetation of the glacier forefield was described,

analyzing a total of 23 sampling plots of 1 3 1 m. Their

positions were acquired through DGPS surveys as

described previously and then mapped by GIS. The

ages of the surfaces where the plots were sampled were

obtained from the glacier analysis. Within every plot,

total vegetation cover and the cover of each vascular

species was estimated visually using indices to express

the relative abundance of each species (þ, ,1%; 1, 1–5%;

2, 5–10%; 3, 10–15%; 4, 15–20%; 5, 20–25%; 6, 25–50%;

7, 50–75%; 8, .75%). Vascular plant species nomencla-

ture is in accordance with Pignatti (1982). Cover

estimates were also given for cryptogams, which were

not identified as species but grouped into three broad

categories: mosses, epilithic lichens, and ground lichens.

Slope and aspect were recorded for each plot.

Climate

Local meteorological data were collected and pro-

cessed to analyze recent climate behavior and evolution

in the study area. The closest and highest automatic

weather station (AWS), which was found to be running

during the last three decades without significant

interruptions, is located at Forni dam at 2180 m a.s.l.,

;5 km northward from Sforzellina Glacier. Other

AWSs, which have been working over the last 35 years,

are located at Santa Caterina Valfurva (1730 m a.s.l.)

and Uzza (1250 m a.s.l.), respectively. At these stations

air temperature and liquid precipitation data were

measured every hour and then recorded on the general

database of the Geological Monitoring Service of ARPA
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Lombardia (Lombardy Regional Environmental Agen-

cy, Sondrio, Italy). Daily, monthly, annual, and seasonal

averages of hourly air temperatures and monthly,

annual, and seasonal cumulated liquid precipitation

were computed for the climate analysis.

RESULTS

Glacier

During the last century Sforzellina Glacier suffered

substantial reductions in its length and surface, as well

as changes in its supraglacial conditions, with the

occurrence of debris cover that now exceeds 40% of

the whole glacier area (Figs. 1 and 2). Two ice-contact

lakes developed during the last 10 years, one of them is

presently active (at the west side of the glacier; see map

in Figs. 1 and 2) and calving phenomena occurred at the

glacier water-contact area. Glacier volume was deter-

mined from the comparison of the DEMs processed

from geophysical (bedrock topography by GPR) and

topographical (glacier surface by GPS) data collected in

1999. The measured volume was ;8.1 3 106 m3 of ice

(i.e., 7.8 3 106 m3 water equivalent, w.e.).

FIG. 1. (A) Sforzellina Glacier in summer 2006 (Photo credit G. Diolaiuti) with debris cover exceeding 40% of the whole glacier
area. (B) Map showing the location of the 2006 glacier and moraine ridges of the 1920s and early 1980s in relation to the mountain
ridges and peaks (height given in m a.s.l.).
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The analysis of the mass balance data collected on

Sforzellina from the hydrological year 1986–1987 to

present (Fig. 3) underlines that (with exception of the

hydrological year 2000–2001) the glacier always lost in

mass (yearly average of net specific balance ¼�1.1 m

w.e.). The whole loss by ablation processes thus exceeds

8 3 106 m3 (more than the remaining volume estimated

in 1999). The rate of the glacier volume loss increased

significantly from 0.30 3 106 m3/yr w.e. in the period

1986/1987–1999/2000 to 0.50 3 106 m3/yr w.e. in the

FIG. 2. Map showing the glacier boundary fluctuations between 1994 and 2006, the moraine ridges of the early 1920s and
1980s, and the location of the vegetation plots.

FIG. 3. Sforzellina Glacier net specific balance data (gray columns, values in m water equivalent, w.e.) and trends (thick gray
line), and the ELA (equilibrium line altitude) yearly value (curve, in m a.s.l.) and trends (thin black line).
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following six years. The accumulation area decreased as

the equilibrium line altitude (ELA), calculated from

yearly mass balance profile analysis, shifted at higher

elevations (from 3029 m a.s.l. in the hydrological year

1986–1987, to 3189 m a.s.l. in 2005–2006; Fig. 3), and

presently almost the entire glacier area lies below the

ELA. The terminus fluctuations (Fig. 4) of Sforzellina

Glacier showed a general retreat over the past 35 years.

During the 1971–2006 period, the snout of Sforzellina

Glacier retreated by ;75 m. The reduction in length

over the 35 years of surveys equals 9% of the 1971

glacier length. The glacier retreated 25 years out of the

35 years analyzed (equal to 71% of the time); the average

retreat rate was approximately �2 m/yr over the whole

period (1971–2006), was�2.6 m/yr considering only the

shorter time span 1985–1995, and accelerated up to �5
m/yr in the last decade (1996–2006).

In spite of this reduction trend, the terminus

fluctuations also showed a small glacier advance in the

period 1975–1984 (þ14.5 m equal to a rate ofþ1.5 m/yr).

It was followed by a transition phase during which the

glacier alternated retreats and small advances, then,

starting from 1992, the glacier shrinkage proceeded. The

advance led to the formation of small moraine ridges

between 1977 and the early 1990s (Rossi et al. 2003). The

glacier limits from 1991 to 2006 and the moraine ridges

of 1920 and 1980 are reported in Figs. 1 and 2.

Corresponding to the terminus fluctuation, the glaciated

area decreased from 0.383 6 0.005 km2 (mean 6 SE) in

1981 to 0.2381 6 0.002 km2 in 2006, with a reduction of

;38%. The yearly rate of surface area loss (Table 1)

remained almost constant (around �0.005 km2/yr)

between 1981 and 2002, while it doubled (to �0.0097
km2/yr) in the period 2002–2006.

Vegetation

Vegetation occurs in all the proglacial area (Tables 2

and 3), showing different patterns in relation to the

surface age (Fig. 1; fourth column of Table 2), which

was assigned on the basis of the GIS analysis, and

ranging from terrains deglaciated after one year to

moraine deposits of the 1920s.

Colonization starts one year after deglaciation with

generally very low coverage (although it reaches 14% in

FIG. 4. Glacier terminus fluctuations from 1971 to 2006. The bars indicate yearly values, the line the cumulative value. When
the glacier terminus was found to be stationary (change¼ 0), no bars are reported.

TABLE 1. Yearly rate of surface area loss of Sforzellina
Glacier, central Italian Alps.

Time frame
Yearly surface area
change (km2/yr) 6Accuracy (km2)

1920–1981 �0.0029 0.009
1981–1985 �0.0053 0.008
1985–2002 �0.0050 0.006
2002–2006 �0.0097 0.005
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some sheltered sites). Vegetation is composed of

scattered individuals of eight species of vascular plants

and by mosses. It is remarkable that, instead of

exclusively pioneer species (i.e., species that appear in

the first stages of colonization but are not able to persist

during succession), the first colonizers are mainly

composed of early-successional species (i.e., species able

to persist during succession as well as to carry out the

first stages of colonization) (Jochmisen 1970, Matthews

1992, Burga 1999). Moreover, these species belong to

different stages of vegetation development and to

different vegetation series. In particular Geum reptans,

Cerastium uniflorum, and Poa laxa are characteristic

species of the scree slopes vegetation, Poa alpina and

Saxifraga bryoides are typical species of the initial alpine

grassland, and Sagina saginoides is a snowbed species.

On surfaces deglaciated 6–11 years ago, the vegetation

is still scattered with low coverage (2–3% as average

although up to 35% in more favorable sites), composed

of mosses and 12 species of vascular plants, and

dominated by Geum reptans and Cerastium uniflorum.

Here we observed a change in species composition with

respect to the younger surface, with the disappearance of

Ranunculus glacialis, and a slightly different pool of

early-successional species (with the ingression of Oxyria

digyna) and snowbed species (Cerastium cerastioides).

Vegetation coverage and species richness increases

significantly on the 25-year-old surfaces, where closed

patches of vegetation occur. The relatively high coverage

of Oxyria digyna, similar to the values of Geum reptans

and Cerastium uniflorum, indicates a further evolution of

the vegetation development.

The initial grassland and the more mature grassland

of the Luzuletum spadiceae occur on surfaces older than

80 years, where it is possible to observe a shift in

community composition, with the dominance of Poa

alpina and/or Luzula spicata, the ingression of Salix

TABLE 2. Features of investigated vegetation plots.

Plot
no.

Total
cover (%)

No.
species

Age since
deglaciation (yr)

Slope
(8)

1 0 0 0
2 1 6 1 0
3 1 2 1 0
4 14 7 1 0
5 0.1 6 6
6 3 5 8 2
7 2 1 7
8 35 6 7 4
9 7 5 11 2
10 22 7 25 2
11 45 8 25
12 65 8 25 18
13 18 5 25 20
14 4 3 25 2
15 20 5 25
16 10 4 25
17 18 4 25
18 38 4 25
19 0.1 2 25
20 15 2 25
21 60 9 .80
22 65 12 .80
23 90 12 .80

TABLE 3. Relative abundance of species in vegetation plots.

Species

Relative abundance by plot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ranunculus glacialis þ þ þ þ þ þ 1 2
Cerastium uniflorum þ 1 þ 1 2 2 1 7 1 1 1 1 2 1 4
Mosses þ þ 1 1 1 1 1 1 2 1 2
Poa laxa þ 1 þ 1 2
Geum reptans þ 1 þ 1 1 2 1 1 6 2 1 1 1 þ 3 4 þ 3 5
Leucanthemopsis alpina þ 1 þ 1 2 þ 2 1 3 3
Saxifraga bryoides 1 1 1 1 1
Poa alpina þ 1 6 2 1
Sagina saginoides þ þ 1 þ 1 þ
Poa alpina vivipara þ 1 1
Oxyria digyna þ 1 1 1 1 1 1 2 3 1
Cerastium cerastioides þ 3 1
Cerastium pedunculatum 1
Arabis caerulea þ þ þ 1 þ 1
Veronica alpina 2 1 1
Linaria alpina 1
Epilobium anagallidifolium
Taraxacum alpinum þ
Sedum alpestre 1 þ
Salix herbacea 2 þ 1
Saxifraga oppositifolia 1
Armeria alpina þ
Luzula spicata 7
Cardamine resedifolia þ
Ground lichens 1
Epilithic lichens 1

Note: Indices express the relative abundance of each species (þ, ,1%; 1, 1–5%; 2, 5–10%; 3, 10–15%; 4, 15–20%; 5, 20–25%; 6,
25–50%; 7, 50–75%; 8, .75%).
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herbacea and Sedum alpestre (snowbed species also

occurring frequently in the climax grassland), and the
persistence of the early-successional Geum reptans,

Cerastium uniflorum, and Leucanthemopsis alpina, and
average total coverage up 90%. Only at this stage do

lichens make their ingression as epilithic lichens growing
on boulders as well as ground foliose lichens.

Climate

Despite the general strong warming found in the Alps

(Beniston 2000), in Valfurva Valley during the period
1988–2006 the mean annual air temperatures show a

very slight decrease (�0.28C at 2180 m a.s.l.), while the
mean summer (June–August) air temperatures are

clearly increasing (þ0.58C; Fig. 5). The precipitation
pattern we evaluated only referred to liquid precipitation

(as the closest AWS [Forni, 2180 m a.s.l.] only recorded
water equivalent data); in the areas surrounding the
glacier data for snow precipitation were not available,

making it difficult to evaluate any change in snow depth
and duration. In any case, a remarkable decrease in total

precipitation (around �10% at 2180 m a.s.l.) has been
recorded since 1988.

DISCUSSION

At a global scale, glaciers are very sensitive to climate
change. In particular, the smaller ones seem to be

consistent climate change indicators, given that they are
showing faster reaction times (Dyurgerov and Meier
2000, Paul et al. 2004). On the other hand, previous

studies suggest it would be inappropriate to use length
changes of a single glacier as being representative of

climate change (Chinn 1999).
Our data show the trend of terminus fluctuations of

Sforzellina Glacier to be in agreement with the general
pattern of glaciers spread all over the Alps, which

resulted in retreating from the end of the Little Ice Age

(LIA) up to now (Zemp et al. 2006) with a short

interruption that occurred between the 1970s and the
1980s (Patzelt 1985, Wood 1988). In addition, the record

of glacier mass balances, which are generally considered
an unambiguous marker of climate change (Cogley and

Adams 1998, Haeberli et al. 1999, Dyurgerov and Meier
2000, Oerlemans 2005), underlines a stronger volume
reduction in the last decade (the average yearly value of

the last 10 years was 66% larger with respect to the
1987–1996 average yearly value).

Moreover, the representativeness of Sforzellina Gla-
cier as witness of the ongoing alpine glacier changes is

further supported by the striking relationship between
the Sforzellina mass balance (1986/1987–2002/2003) and

those of the alpine glaciers reported in the Glacier Mass
Balance Bulletins (IAHS (ICSI)-UNEP-UNESCO,

1988–2005; Bravais-Pearson correlation coefficient, r ¼
0.84). Furthermore, the ELAs of Sforzellina Glacier
(1986/1987–2002/2003) compared with the mean alpine

ELA (IAHS (ICSI)-UNEP-UNESCO, 1988–2005) also
show a strong correlation (r ¼ 0.82).

An accelerating surface area loss was also found for
the period 2002–2006, and the glacier surface in 2006

resulted in a decreased of approximately �14% with
respect to the 2002 glacier area.

The glacial reduction demonstrated by these findings
(i.e., terminus fluctuations, mass balances, and surface
area changes) is interpreted as a truthful impact of

climate change. Indeed, as the transfer function among
climate changes and glacier variations does not change

in time (Oerlemans 2005), an acceleration in glacial
changes is suggested.

Nevertheless, it is less easy to identify the climatic
elements driving the glacier changes and, despite the

many investigations on this topic (e.g., Hoelzle et al.
2003, Oerlemans 2005), the scientific debate is still open.

Air temperature and precipitation, the two factors most

FIG. 5. Mean summer air temperatures (June–August) in the period 1988–2005 recorded at Uzza (solid dots) and Forni (solid
triangles).
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commonly correlated with glacier fluctuations, are only

two elements of the complex chain of processes linking

climate and glacier fluctuations (Haeberli 1995, Chinn

1999). Therefore, the glacier fluctuations indicate a

complex combination of mass and energy exchange at

the Earth’s surface. The air temperature increase

occurring in the alpine areas since the end of the LIA

activated a positive feedback, with the consequent

increase of both the downward sensible heat flux and

the long-wave radiation balance (Oerlemans et al. 1998).

Furthermore, during the last two decades, Sforzellina

Glacier experienced a strong decrease of surface albedo

(due to increasing debris coverage), which surely played

a key role in increasing the glacier absorption of

incoming energy fluxes, thus making larger the quantity

of energy available for glacier melting.

To quantify the possible influence of temperature on

the recent evolution of Sforzellina Glacier, neglecting

the contribution due to changing precipitation, a simple

approach was followed, according to Chinn (1999) and

Oerlemans (2001). Analyzing all the ELAs of the period

1987�2006 (Fig. 3), the average difference between the

estimated steady-state ELA and the calculated annual

ELAs, gives a mean increase of ;150 m. This upward

shift, obtained using a standard lapse rate of

�0.00658C/m, represents a general warming of approx-

imately þ 0.68C since 1987. Therefore, considering that

the summer warming that occurred in the same period is

þ0.58C, the difference indicates that changes in precip-

itation also have to be considered.

In the context of vegetation succession, our data

support recent evidence (Cannone et al. 2007) suggesting

that the significant changes in vegetation community

dynamics we found are consequences of an actual air

temperature warming combined with the reduction of

precipitation and the shortening of the snow season.

Like the glacier reduction, all processes seem to be

accelerated, including the vegetation dynamics.

The comparison of our data with glacial chronose-

quences described for the European Alps allows an
assessment of the acceleration rate of these processes. In

the alpine belt (.2200 m a.s.l.) the colonization of the

recently deglaciated terrains is reported to start within

4–8 years after deglaciation (Stöcklin and Bäumler 1996,

Burga 1999, Tscherko et al. 2005), with scattered early

pioneer species. At least 10–25 years are required for the

ingression of the early-successional species and the
development of a well-established early-successional

community (Pirola and Credaro 1993, Niederfriniger

Schlag and Erschbamer 2000, Caccianiga and Andreis

2004, Raffl and Erschbamer 2004, Tscherko et al. 2005).

Our data provide evidence that these early stages of

colonization suffered a dramatic acceleration: plant

species are able to colonize the glacier forefield only

one year after the glacier retreat. Considering the

differences of colonization time between our data and

the existing literature, the colonization speed increased

PLATE 1. Androsace alpina is a pioneer species colonizing the alpine and nival belts of the European Alps and is representative
of the species actually suffering the highest impacts of climate change on high-elevation ecosystems. Photo credit: N. Cannone.
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at least four times for the establishment of scattered

individuals (one year in the Sforzellina area vs. 4–8 years

reported by literature) and about two times for the well-

established discontinuous early-successional community

(6–11 years at Sforzellina vs. 10–25 years reported by the

literature).

On the other hand, the following stages of vegetation

development (.25 years) do not show remarkable

differences with respect to the chronosequences de-

scribed in the literature for the Alps (such as Pirola and

Credaro 1993, Niederfriniger Schlag and Erschbamer

2000, Caccianiga and Andreis 2004, Raffl and Ersch-

bamer 2004, Tscherko et al. 2005).

The ecological requirements of the species occurring

on the one-year-old surface may explain the ability of

these species to colonize such young substrata. In fact,

most of them are species typical of the scree slopes or of

rocks, with only one snowbed species (Sagina sagi-

noides). The absence of snowbed species in a glacier

forefield appears to be a paradox if we do not take into

account the strong reduction of snow cover abundance

and permanence documented for a site very close to the

study area (Cannone et al. 2007). The shortening of the

snow cover length supports the hypothesis by Galen and

Stanton (1995) that climate change may induce inter-

specific differences in growth phenology of coexisting

species and promote shifts in snowbed plant communi-

ties. Moreover, Sagina saginoides is a short-lived species

with abundant seed production, and it is possible that

the success of this species may be related to its efficient

dispersal strategies.

The functional types of most of the species involved in

the early stages of colonization may also provide some

explanation for the accelerated rates of vegetation

colonization. All these species are long-lived perennials

adapted to the harsh environmental conditions of the

alpine and nival belts and of the glacier forefield. Most

of the early-successional species that are able to colonize

the one-year-old terrains are clonal species, including

clonal plants with widely spaced ramets (e.g., Geum

reptans, Saxifraga bryoides, Cerastium uniflorum) as well

as clonal plants with a clumped growth form (e.g., Poa

alpina). Clonal growth is one of the most important

adaptations to the severe climatic conditions and the

nutrient shortage characteristic of the alpine environ-

ments (Stöcklin and Bäumler 1996, Pluess and Stöcklin

2005). Thus clonal reproduction increases with altitude

both in closed grasslands and in pioneer communities

(Stöcklin 1992). Clonal growth is a key factor for the

successful establishment of the primary succession

because it provides long-lived perennials with the ability

to persist during succession (e.g., Geum reptans) with a

large amount of phenotypic plasticity (Stöcklin and

Bäumler 1996). Phenotypic plasticity is one of the most

important mechanisms hypothesized allowing plants to

persist in the environment modified by climatic change

(Theurillat and Guisan 2001), thus avoiding migration

and/or extinction. Therefore the preponderance of

clonal plants on the one-year-old surfaces demonstrates

the correctness of this hypothesis and explains how

colonization could occur with such fast rates at an

elevation .2800 m a.s.l.

Acceleration of dynamics is evident only on recent

vegetation; the fact that older stages of succession are

quite similar to those described by other glacial

chronosequences indicates that climate change impacts

on these stages are not severe enough to induce

significant changes and that older and more developed

stages are probably more resistant to, and buffered

from, climatic perturbation.

Within the well-documented increase of air tempera-

ture during the 20th century over the planet (IPCC

2001), the warming was significantly higher in the

European Alps (Beniston 2000, Böhm et al. 2001).

More recently Casty et al. (2005) in their temperature

reconstruction for the Alps since 1500, found that 1994,

2000, 2002, and 2003 were the warmest years since 1500.

Moreover, they found that summer warming was

particularly severe after 1970, reaching, in 2003, the

highest peak of summer temperature since 1500. Our

data confirm the general summer warming of the last

two decades, even if, at this site, very warm summers

were recorded also in 1991 and 1998.

The temperature increase we found (þ0.58C in

summer) has to be considered in the frame of the

general post-1985 climate warming, which was accom-

panied by reduced precipitation on the Alps. Whereas

the number of days with snow on the ground showed

little evolution, the duration of continuous snow cover

was clearly declining at all elevations. Although

continuous snow cover tended to start earlier, it also

melted much earlier (Beniston et al. 2003, Martin and

Durand 2006). This general trend seems related to a

positive North Atlantic Oscillation (NAO) index (Up-

penbrink 1999) and to the summer warming. Our

precipitation data indicate a general decrease (�10%)

in agreement with the general trend (Brunetti et al.

2000). It is unfortunate that there are not any snow

depth and duration data available for the Sforzellina

Glacier forefield, but if we consider other local data

recorded in another locality of the Upper Valtellina

since 1978, we find they agree with the general patterns

of the snow cover decrease (Cannone et al. 2007).

CONCLUSIONS

The stronger ice mass loss affecting the Sforzellina

Glacier during the last decade (1996�2006) may be due

to the local summer warming combined with reduced

precipitation and the shortening of the snow season

(Cannone et al. 2007). This abiotic evidence of climate

change is correlated with changes in the vegetation of

the glacier forefield, which indicated an acceleration of

colonization rates in the same period. Here we show that

there is a strong correspondence between the abiotic and

biotic components of high altitude ecosystems and that,

over the last decade (1996�2006) and, in particular since
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2002, the impacts of climate change have undergone a

dramatic acceleration, much stronger than any that

occurred during the last 35 years. This acceleration

occurred in tandem with a documented slight summer

warming and a possible decrease in snow cover. Further

in situ investigations are required to directly measure

some of the influential parameters involved (e.g., snow

cover, avalanche frequency) and to analyze species-

specific responses to factors like snow cover reduction.
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Böhm, R., I. Auer, M. Brunetti, M. Maugeri, T. Nanni, and W.
Schöner. 2001. Regional temperature variability in the
European Alps: 1760–1998 from homogenized instrumental
time series. International Journal of Climatology 21:1779–
1801.

Brunetti, M., M. Maugeri, and T. Nanni. 2000. Variations of
temperature and precipitation in Italy from 1866 to 1995.
Theoretical and Applied Climatology 65:165–174.

Burga, C. A. 1999. Vegetation development on the glacier
forefield Morteratsch (Switzerland). Applied Vegetation
Science 2:17–24.

Caccianiga, M., and C. Andreis. 2004. Pioneer herbaceous
vegetation on glacier forefields in the Italian Alps. Phyto-
coenologia 34(1):55–89.

Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unex-
pected impacts of climatic change on alpine vegetation.
Frontiers in Ecology and the Environment 7:360–364.

Casty, C., H. Wanner, J. L. Luterbacher, J. Esper, and R.
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