286 research outputs found
Extracellular histones are a target in myocardial ischaemia reperfusion injury.
Acute myocardial infarction causes lethal cardiomyocyte injury during ischaemia and reperfusion (I/R). Histones have been described as important Danger Associated Molecular Proteins (DAMPs) in sepsis. Aims The objective of this study was to establish whether extracellular histone release contributes to myocardial infarction. Methods and results Isolated, perfused rat hearts were subject to I/R. Nucleosomes and histone H4 release was detected early during reperfusion. Sodium-β-O-Methyl cellobioside sulfate (mCBS), a newly developed histone-neutralising compound, significantly reduced infarct size whilst also reducing the detectable levels of histones. Histones were directly toxic to primary adult rat cardiomyocytes in vitro. This was prevented by mCBS, or HIPe, a recently described, histone-H4 neutralizing peptide, but not by an inhibitor of TLR4, a receptor previously reported to be involved in DAMP-mediated cytotoxicity. Furthermore, TLR4-reporter HEK293 cells revealed that cytotoxicity of histone H4 was independent of TLR4 and NF-κB. In an in vivo rat model of I/R, HIPe significantly reduced infarct size. Conclusion Histones released from the myocardium are cytotoxic to cardiomyocytes, via a TLR4-independent mechanism. The targeting of extracellular histones provides a novel opportunity to limit cardiomyocyte death during I/R injury of the myocardium. Translational perspective Acute myocardial infarction causes lethal cardiomyocyte injury during ischaemia and reperfusion (I/R). New approaches are needed to prevent cardiomyocyte injury and limit final infarct size. We show that histones released from damaged cells, and histone-H4 in particular, causes rapid cardiomyocyte death during I/R. mCBS, a compounds targeting histones non-specifically, was cardioprotective in ex vivo rat hearts, while HIPe, a targeting histone H4 specifically, was cardioprotective in an in vivo rat model. HIPe may have potential as a therapeutic agent in the setting of acute myocardial infarction
Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell
PubMed ID: 23592993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
‘Maintaining balance and harmony’: Javanese perceptions of health and cardiovascular disease
Community intervention programmes to reduce cardiovascular disease (CVD) risk factors within urban communities in developing countries are rare. One possible explanation is the difficulty of designing an intervention that corresponds to the local context and culture
Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection
Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber
Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model
Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD
Normative Beliefs and Sexual Risk in China
We examined normative beliefs about multiple sexual partners and social status in China and their association with risky sexual behaviors and sexually transmitted infections (STIs). Self-reported and biological markers of sexual risk were examined among 3,716 market vendors from a city in eastern China. Men who were older or with less education believed having multiple sexual partners was linked to higher social status. Adjusting for demographic characteristics, normative beliefs were significantly associated with having multiple sexual partners, while having multiple sexual partners was significantly associated with STIs. Normative beliefs regarding sexual behaviors may play an important role in individual risk behaviors. Future HIV/STI interventions must address community beliefs about the positive meaning of sexual risks, particularly among men with traditional beliefs about gender roles
Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance
During development, precise temporal and spatial gradients are responsible for
guiding axons to their appropriate targets. Within the developing ventral
midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain
targets remain to be fully elucidated. Wnts are morphogens that have been
identified as axon guidance molecules. Several Wnts are expressed in the VM
where they regulate the birth of DA neurons. Here, we describe that a precise
temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal
projections by VM DA neurons. In mice at E11.5, Wnt5a is
expressed in the VM where it was found to promote DA neurite and axonal growth
in VM primary cultures. By E14.5, when DA axons are approaching their striatal
target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM
explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is
capable of repelling DA neurites. Antagonism experiments revealed that the
effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase,
Rac1 (a component of the non-canonical Wnt planar cell polarity pathway).
Moreover, the effects were specific as they could be blocked by Wnt5a antibody,
sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further
verified in Wnt5a−/− mice, where
fasciculation of the medial forebrain bundle (MFB) as well as the density of DA
neurites in the MFB and striatal terminals were disrupted. Thus, our results
identify a novel role of Wnt5a in DA axon growth and guidance
A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis . It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed
- …