68 research outputs found
Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats
Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model
A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions
All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies
The effects of a muscle resistance program on the functional capacity, knee extensor muscle strength and plasma levels of IL-6 and TNF-α in pre-frail elderly women: a randomized crossover clinical trial - a study protocol
<p>Abstract</p> <p>Background</p> <p>With the increase in the elderly population, a growing number of chronic degenerative diseases and a greater dependency on caregivers have been observed. Elderly persons in states of frailty remain more susceptible to significant health complications. There is evidence of an inverse relationship between plasma levels of inflammatory mediators and levels of functionality and muscle strength, suggesting that muscle-strengthening measures can aid in inflammatory conditions. The purpose of this study will be verified the effect of a muscle-strengthening program with load during a ten-week period in pre-frail elderly women with attention to the following outcomes: (1) plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), (2) functional capacity and (3) knee extensor muscle strength.</p> <p>Methods/Design</p> <p>The study design is a randomized crossover clinical trial evaluating 26 elderly women (regardless of their race and/or social condition) who are community residents, older than 65, and classified as pre-frail according to the criteria previously described by Fried et al. (2004). All subjects will be assessed using the Timed up and go and 10-Meter Walk Test functional tests. The plasma levels of IL-6 and TNF-α will be assessed by ELISA (<it>enzyme-linked immunosorbent assay</it>) with high sensitivity kits (Quantikine<sup>®</sup>HS, R&D Systems Minneapolis, MN, U.S.). Knee extensor muscle strength will be assessed using the <it>Byodex System 3 Pro</it><sup><it>® </it></sup>isokinetic dynamometer at angular speeds of 60 and 180°/s. The intervention will consist of strengthening exercises of the lower extremities at 50 to 70% of 1RM (maximal resistance) three times per week for ten weeks. The volunteers will be randomized into two groups: group E, the intervention group, and group C, the control group that did not initiate any new activities during the initial study period (ten weeks). After the initial period, group C will begin the intervention and group E will maintain everyday activities without exercising. At the end of the total study period, all volunteers will be reassessed.</p> <p>Discussion</p> <p>To demonstrate and discuss possible influences of load-bearing exercises on the modification of plasma levels of IL-6 and TNF-α and in the functional performance of pre-frail elderly women.</p> <p>Trial Registration</p> <p>ISRCTN62824599</p
Divergência genética entre acessos de batata-doce utilizando descritores morfoagronômicos das raízes
Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang
Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female
- …