118 research outputs found

    Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    Get PDF
    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction.Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here,we study the cranial morphology, aswell as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanismthat mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jawseparation.We hypothesize that this modifiedway of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system

    Cost-effectiveness of statins for coronary heart disease patients with hypercholesterolaemia

    Get PDF
    published_or_final_versio

    Cost-effectiveness and cost-utility of statins in patients with CHD and average cholesterol levels applied to Hong Kong

    Get PDF
    published_or_final_versio

    A cost-benefit analysis - the care study applied to Hong Kong patients

    Get PDF
    published_or_final_versio

    Cost-effectiveness analysis of applying the Cholesterol and Recurrent Events (CARE) study protocol in Hong Kong.

    Get PDF
    OBJECTIVE: To determine the cost-effectiveness of secondary prevention with pravastatin in Hong Kong patients with coronary heart disease and average cholesterol levels. DESIGN: Cost-effectiveness analysis based on published results of the CARE study. PATIENTS: Men and women post-myocardial infarction with average cholesterol levels. MAIN OUTCOME MEASURES: Cost-effectiveness analysis: cost per life saved, cost per fatal or non-fatal coronary event prevented, cost per procedure prevented, and cost per fatal or non-fatal stroke prevented. Cost-utility analysis: gross cost and net cost per quality-adjusted life year gained calculated using two alternative models. RESULTS: Cost per life saved or death prevented was HK4,442,350(nondiscounted);costperfatalornonfatalcardiaceventpreventedHK4,442,350 (non-discounted); cost per fatal or non-fatal cardiac event prevented HK1,146,413; cost per procedure prevented HK732,759;andcostperfatalornonfatalstrokepreventedHK732,759; and cost per fatal or non-fatal stroke prevented HK2,961,566. Net cost per quality adjusted life year gained was HK73,218andHK73,218 and HK65,280 non-discounted, respectively using the two alternative models. CONCLUSIONS: The results of this study can assist in prioritising the use of health care resources in Hong Kong but should be considered alongside the benefits and costs of alternative interventions for coronary heart disease.published_or_final_versio

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (<it>Danio rerio</it>) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.</p> <p>Results</p> <p>We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.</p> <p>Conclusion</p> <p>Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.</p

    3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    Get PDF
    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and theirPeer ReviewedPostprint (published version

    Defining the Boundaries of Development wih Plasticity

    No full text
    International audienceThe concept of plasticity has always been present in the history of developmental biology, both within the theory of epigenesis and within morphogenesis studies. However this tradition relies also upon a genetic conception of plasticity. Founded upon the concepts of "phenotypic plasticity" and "reaction norm," this genetic conception focuses on the array of possible phenotypic change in relation to diversified environments. Another concept of plasticity can be found in recent publications by some developmental biologists (Gilbert, West-Eberhard). I argue that these authors adopt a "broad conception of plasticity" that is closely related to a notion of development as something that is ongoing throughout an organism's lifecycle, and has no clear-cut boundaries. However, I suggest that given a narrow conception of plasticity, one can define temporal boundaries for development that are linked to specific features of the morphological process, which are different from behavioral and physiological processes
    corecore