123 research outputs found

    Integrating climate adaptation and biodiversity conservation in the global ocean

    Get PDF
    The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality

    Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats

    Get PDF
    Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobón island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobón and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobón island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobón are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies

    Balloon kyphoplasty in malignant spinal fractures: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal fractures are a common source of morbidity in cancer patients. Balloon Kyphoplasty (BKP) is a minimally invasive procedure designed to stabilize fractures and correct vertebral deformities. We performed a meta-analysis to determine the efficacy and safety of BKP for spinal fractures in cancer patients.</p> <p>Methods</p> <p>We searched several electronic databases up to September 2008 and the reference lists of relevant publications for studies reporting on BKP in patients with spinal fractures secondary to osteolytic metastasis and multiple myeloma. Outcomes sought included pain relief, functional capacity, quality of life, vertebral height, kyphotic angle and adverse events. Studies were assessed for methodological bias, and estimates of effect were calculated using a random-effects model. Potential reasons for heterogeneity were explored.</p> <p>Results</p> <p>The literature search revealed seven relevant studies published from 2003 to 2008, none of which were randomized trials. Analysis of those studies indicated that BKP resulted in less pain and better functional outcomes, and that these effects were maintained up to 2 years post-procedure. While BKP also improved early vertebral height loss and spinal deformity, these effects were not long-term. No serious procedure-related complications were described. Clinically asymptomatic cement leakage occurred in 6% of all treated levels, and new vertebral fractures in 10% of patients. While there is a lack of studies comparing BKP to other interventions, some data suggested that BKP provided similar pain relief as vertebroplasty and a lower cement leakage rate.</p> <p>Conclusion</p> <p>It appears that there is level III evidence showing BKP is a well-tolerated, relatively safe and effective technique that provides early pain relief and improved functional outcomes in patients with painful neoplastic spinal fractures. BKP also provided long-term benefits in terms of pain and disability. However, the methodological quality of the original studies prevents definitive conclusions being drawn. Further investigation into the use of BKP for spinal fractures in cancer patients is warranted.</p

    Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    Get PDF
    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.237

    The Barley Genome Sequence Assembly Reveals Three Additional Members of the <i>CslF </i>(1,3;1,4)-b-Glucan Synthase Gene Family

    Get PDF
    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β-glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls

    RMDAP: A Versatile, Ready-To-Use Toolbox for Multigene Genetic Transformation

    Get PDF
    Background: The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. Methodology/Principal Findings: Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-ofprinciple experiment was confirmed by successfully transferring several heterologous genes into the plant genome. Conclusions/Significance: This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call ‘‘one-sto

    Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic <it>in vivo </it>situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.</p> <p>Methods</p> <p>Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).</p> <p>Results</p> <p>BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.</p> <p>Conclusion</p> <p>This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.</p

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Two Novel Parvoviruses in Frugivorous New and Old World Bats

    Get PDF
    Bats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1). Those viruses were circulating in the corresponding bat colony at rates of 7–8%. Aj-BtPV-1 was also found in Artibeus lituratus (5.5%). Both viruses were detected in the blood of infected animals at high concentrations: up to 10E8 and to 10E10 copies/ml for Aj-BtPV-1 and Eh-BtPV-1 respectively. Eh-BtPV-1 was additionally detected in all organs collected from bats (brain, lungs, liver, spleen, kidneys and intestine) and spleen and kidneys were identified as the most likely sites where viral replication takes place. Our study shows that bat parvoviruses share common ancestors with known parvoviruses of humans and livestock. We also provide evidence that a variety of Parvovirinae are able to cause active infection in bats and that they are widely distributed in these animals with different geographic origin, ecologies and climatic ranges
    corecore