92 research outputs found

    Analysis of synonymous codon usage in Hepatitis A virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis A virus is the causative agent of type A viral hepatitis, which causes occasional acute hepatitis. Nevertheless, little information about synonymous codon usage pattern of HAV genome in the process of its evolution is available. In this study, the key genetic determinants of codon usage in HAV were examined.</p> <p>Results</p> <p>The overall extent of codon usage bias in HAV is high in <it>Picornaviridae</it>. And the patterns of synonymous codon usage are quite different in HAV genomes from different location. The base composition is closely correlated with codon usage bias. Furthermore, the most important determinant that results in such a high codon bias in HAV is mutation pressure rather than natural selection.</p> <p>Conclusions</p> <p>HAV presents a higher codon usage bias than other members of <it>Picornaviridae</it>. Compositional constraint is a significant element that influences the variation of synonymous codon usage in HAV genome. Besides, mutation pressure is supposed to be the major factor shaping the hyperendemic codon usage pattern of HAV.</p

    Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    Get PDF
    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms

    Predator-Induced Demographic Shifts in Coral Reef Fish Assemblages

    Get PDF
    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management

    Functionally Redundant RXLR Effectors from <em>Phytophthora infestans</em> Act at Different Steps to Suppress Early flg22-Triggered Immunity

    Get PDF
    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans

    VIRUS AND VIRUS-LIKE PARTICLES IN THE FECES OF CATS WITH AND WITHOUT DIARRHEA

    No full text
    Negative staining electron microscopy was used to identify viruses in 166 normal and 62 diarrhoeal faecal samples from 208 cats admitted to an animal shelter during a 16-month period (March 1984 to June 1985). On the basis of size and shape 7 distinct viral types were detected: 24 nm parvovirus-like particles, 30 nm astrovirus, 30 nm picornavirus-like particles, reovirus, rotavirus, coronavirus and a 75 nm "togavirus-like" particle. The incidence of these particles in the 208 cats was 11%, 7%, 6%, 0.4%, 5%, 1% and 1% respectively. Virus isolation studies using 40 of the faecal samples succeeded in isolating reovirus 1 in 2 cases. Immune electron microscope studies demonstrated the presence of antibody in a human serum to cat astrovirus, but failed to clarify the identity of the parvovirus-like particles and picornavirus-like particles, other than showing that some of the parvovirus-like particles were not related to feline panleukopenia virus. It was found that parvovirus-like particles, astrovirus, picornavirus-like particles, reovirus and rotavirus could be excreted by cats with normal faeces as well as cats with diarrhoeal faeces. Parvovirus-like particles, astrovirus, picornavirus-like particles and rotavirus could be excreted in high concentration in normal faeces. There was no simple relationship between age and diarrhoea in the population of cats studied. Age was not a critical factor in the excretion of parvovirus-like particles, astrovirus, picornavirus-like particles and rotavirus. The incidence of diarrhoea was not clearly associated with the seasons

    Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers

    No full text
    Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging. © 2002 Elsevier Science B.V. All rights reserved.link_to_subscribed_fulltex
    • …
    corecore