426 research outputs found

    Arterial Spin-Labeling Perfusion Metrics in Pediatric Posterior Fossa Tumor Surgery

    Get PDF
    BACKGROUND AND PURPOSE: Pediatric posterior fossa tumors often present with hydrocephalus; postoperatively, up to 25% of patients develop cerebellar mutism syndrome. Arterial spin-labeling is a noninvasive means of quantifying CBF and bolus arrival time. The aim of this study was to investigate how changes in perfusion metrics in children with posterior fossa tumors are modulated by cerebellar mutism syndrome and hydrocephalus requiring pre-resection CSF diversion. MATERIALS AND METHODS: Forty-four patients were prospectively scanned at 3 time points (preoperatively, postoperatively, and at 3-month follow-up) with single- and multi-inflow time arterial spin-labeling sequences. Regional analyses of CBF and bolus arrival time were conducted using coregistered anatomic parcellations. ANOVA and multivariable, linear mixed-effects modeling analysis approaches were used. The study was registered at clinicaltrials.gov (NCT03471026). RESULTS: CBF increased after tumor resection and at follow-up scanning (P = .045). Bolus arrival time decreased after tumor resection and at follow-up scanning (P = .018). Bolus arrival time was prolonged (P = .058) following the midline approach, compared with cerebellar hemispheric surgical approaches to posterior fossa tumors. Multivariable linear mixed-effects modeling showed that regional perfusion changes were more pronounced in the 6 children who presented with symptomatic obstructive hydrocephalus requiring pre-resection CSF diversion, with hydrocephalus lowering the baseline mean CBF by 20.5 (standard error, 6.27) mL/100g/min. Children diagnosed with cerebellar mutism syndrome (8/44, 18.2%) had significantly higher CBF at follow-up imaging than those who were not (P = .040), but no differences in pre- or postoperative perfusion parameters were seen. CONCLUSIONS: Multi-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following resolution of cerebellar mutism syndrome

    A road to reality with topological superconductors

    Get PDF
    Topological states of matter are a source of low-energy quasiparticles, bound to a defect or propagating along the surface. In a superconductor these are Majorana fermions, described by a real rather than a complex wave function. The absence of complex phase factors promises protection against decoherence in quantum computations based on topological superconductivity. This is a tutorial style introduction written for a Nature Physics focus issue on topological matter.Comment: pre-copy-editing, author-produced version of the published paper: 4 pages, 2 figure

    Subcellular fractionation method to study endosomal trafficking of Kaposi’s sarcoma-associated herpesvirus

    Get PDF
    Background Virus entry involves multiple steps and is a highly orchestrated process on which successful infection collectively depends. Entry processes are commonly analyzed by monitoring internalized virus particles via Western blotting, polymerase chain reaction, and imaging techniques that allow scientist to track the intracellular location of the pathogen. Such studies have provided abundant direct evidence on how viruses interact with receptor molecules on the cell surface, induce cell signaling at the point of initial contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the cell for their ultimate infectious agenda. However, there is dearth of knowledge in regards to trafficking of a virus via endosomes. Herein, we describe an optimized laboratory procedure to isolate individual organelles during different stages of endocytosis by performing subcellular fractionation. This methodology is established using Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of human foreskin fibroblast (HFF) cells as a model. With KSHV and other herpesviruses alike, envelope glycoproteins have been widely reported to physically engage target cell surface receptors, such as integrins, in interactions leading to entry and subsequent infection. Results Subcellular fractionation was used to isolate early and late endosomes (EEs and LEs) by performing a series of centrifugations steps. Specifically, a centrifugation step post-homogenization was utilized to obtain the post-nuclear supernatant containing intact intracellular organelles in suspension. Successive fractionation via sucrose density gradient centrifugation was performed to isolate specific organelles including EEs and LEs. Intracellular KSHV trafficking was directly traced in the isolated endosomal fractions. Additionally, the subcellular fractionation approach demonstrates a key role for integrins in the endosomal trafficking of KSHV. The results obtained from fractionation studies corroborated those obtained by traditional imaging studies. Conclusions This study is the first of its kind to employ a sucrose flotation gradient assay to map intracellular KSHV trafficking in HFF cells. We are confident that such an approach will serve as a powerful tool to directly study intracellular trafficking of a virus, signaling events occurring on endosomal membranes, and dynamics of molecular events within endosomes that are crucial for uncoating and virus escape into the cytosol

    Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action.

    Get PDF
    The clinical development of anticancer metallodrugs is often hindered by the elusive nature of their molecular targets. To identify the molecular targets of an antimetastatic ruthenium organometallic complex based on 1,3,5-triaza-7-phosphaadamantane (RAPTA), we employed a chemical proteomic approach. The approach combines the design of an affinity probe featuring the pharmacophore with mass-spectrometry-based analysis of interacting proteins found in cancer cell lysates. The comparison of data sets obtained for cell lysates from cancer cells before and after treatment with a competitive binder suggests that RAPTA interacts with a number of cancer-related proteins, which may be responsible for the antiangiogenic and antimetastatic activity of RAPTA complexes. Notably, the proteins identified include the cytokines midkine, pleiotrophin and fibroblast growth factor-binding protein 3. We also detected guanine nucleotide-binding protein-like 3 and FAM32A, which is in line with the hypothesis that the antiproliferative activity of RAPTA compounds is due to induction of a G2/M arrest and histone proteins identified earlier as potential targets

    Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension

    Get PDF
    Intermittent fasting (IF) can improve function and health during aging in laboratory model organisms, but the mechanisms at work await elucidation. We subjected fruit flies (Drosophila melanogaster) to varying degrees of IF and found that just one month of a 2-day fed:5-day fasted IF regime at the beginning of adulthood was sufficient to extend lifespan. This long-lasting, beneficial effect of early IF was not due to reduced fecundity. Starvation resistance and resistance to oxidative and xenobiotic stress were increased after IF. Early-life IF also led to higher lipid content in 60-day-old flies, a potential explanation for increased longevity. Guts of flies 40 days post-IF showed a significant reduction in age-related pathologies and improved gut barrier function. Improved gut health was also associated with reduced relative bacterial abundance. Early IF thus induced profound long-term changes. Pharmacological and genetic epistasis analysis showed that IF acted independently of the TOR pathway because rapamycin and IF acted additively to extend lifespan, and global expression of a constitutively active S6K did not attenuate the IF-induced lifespan extension. We conclude that short-term IF during early life can induce long-lasting beneficial effects, with robust increase in lifespan in a TOR-independent manner, probably at least in part by preserving gut health

    KSHV gB associated RGD interactions promote attachment of cells by inhibiting the potential migratory signals induced by the disintegrin-like domain

    Get PDF
    Background: Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is not only expressed on the envelope of mature virions but also on the surfaces of cells undergoing lytic replication. Among herpesviruses, KSHV gB is the only glycoprotein known to possess the RGD (Arg-Gly-Asp) binding integrin domain critical to mediating cell attachment. Recent studies described gB to also possess a disintegrin-like domain (DLD) said to interact with non-RGD binding integrins. We wanted to decipher the roles of two individually distinct integrin binding domains (RGD versus DLD) within KSHV gB in regulating attachment of cells over cell migration

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    DJ-1 protects against cell death following acute cardiac ischemia-reperfusion injury.

    Get PDF
    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection

    Polycation-Ï€ Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Access to primary care for socio-economically disadvantaged older people in rural areas: a qualitative study

    Get PDF
    Objective: We aim to explore the barriers to accessing primary care for socio-economically disadvantaged older people in rural areas. Methods: Using a community recruitment strategy, fifteen people over 65 years, living in a rural area, and receiving financial support were recruited for semi-structured interviews. Four focus groups were held with rural health professionals. Interviews and focus groups were audio-recorded and transcribed. Thematic analysis was used to identify barriers to primary care access. Findings: Older people’s experience can be understood within the context of a patient perceived set of unwritten rules or social contract – an individual is careful not to bother the doctor in return for additional goodwill when they become unwell. However, most found it difficult to access primary care due to engaged telephone lines, availability of appointments, interactions with receptionists; breaching their perceived social contract. This left some feeling unwelcome, worthless or marginalised, especially those with high expectations of the social contract or limited resources, skills and/or desire to adapt to service changes Health professionals’ described how rising demands and expectations coupled with service constraints had necessitated service development, such as fewer home visits, more telephone consultations, triaging calls and modifying the appointment system. Conclusion: Multiple barriers to accessing primary care exist for this group. As primary care is re-organised to reduce costs, commissioners and practitioners must not lose sight of the perceived social contract and models of care that form the basis of how many older people interact with the service
    • …
    corecore