319 research outputs found

    Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay

    Full text link
    We investigate numerically how accurately one could constrain the strengths of different short-range contributions to neutrino-less double beta decay in effective field theory. Depending on the outcome of near-future experiments yielding information on the neutrino masses, the corresponding bounds or estimates can be stronger or weaker. A particularly interesting case, resulting in strong bounds, would be a positive signal of neutrino-less double beta decay that is consistent with complementary information from neutrino oscillation experiments, kinematical determinations of the neutrino mass, and measurements of the sum of light neutrino masses from cosmological observations. The keys to more robust bounds are improvements of the knowledge of the nuclear physics involved and a better experimental accuracy.Comment: 23 pages, 3 figures. Minor changes. Matches version published in JHE

    Collaborative Enhancement of Antibody Binding to Distinct PECAM-1 Epitopes Modulates Endothelial Targeting

    Get PDF
    Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitate targeted drug delivery to endothelial cells by “vascular immunotargeting.” To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs) to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The “collaborative enhancement” of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The “collaborative enhancement” phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents

    Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines.</p> <p>Methods</p> <p>Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis.</p> <p>Results</p> <p>We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis.</p> <p>Conclusions</p> <p>The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first evidence that altered primary cilium expression and function may be part of some malignant phenotypes. Further, we provide the first evidence that ciliogenesis is not an all or none process; rather defects can arrest this process at various points, particularly at the stage subsequent to basal body association with the plasma membrane.</p

    Angiotensin-Converting Enzyme (ACE) Gene Insertion/Deletion Polymorphism and ACE Inhibitor-Related Cough: A Meta-Analysis

    Get PDF
    Objective: An insertion/deletion (I/D) variant in the angiotensin-converting enzyme (ACE) gene was associated with ACE inhibitor (ACEI)-related cough in previous studies. However, the results were inconsistent. Our objective was to assess the relationship between the ACE I/D polymorphism and ACEI-related cough by meta-analysis and to summarize all studies that are related to ACE I/D polymorphism and ACEI-cough and make a summary conclusion to provide reference for the researchers who attempt to conduct such a study. Methods: Databases including PubMed, EMbase, Cochrane Library, and China National Knowledge Infrastructure, were searched for genetic association studies. Data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated. Metaregression and subgroup analyses were performed to identify the source of heterogeneity. Results: Eleven trials, including 906 cases (ACEI-related cough) and 1,175 controls, were reviewed in the present meta-analysis. The random effects pooled OR was 1.16 (95% CI: 0.78-1.74, p = 0.46) in the dominant model and 1.61 (95% CI: 1.18-2.20, p = 0.003) in the recessive model. Heterogeneity was found among and within studies. Metaregression indicated that the effect size was positively associated with age and negatively associated with follow-up duration of ACEI treatment. Subgroup analysis revealed a significant association between ACE I/D polymorphism and ACEI-related cough in studies with mean age >60 y, but not in studies with mean age 2 mo or in studies in Caucasians. No heterogeneity was detected in these two subgroups. Conclusions: Synthesis of the available evidence supports ACE I/D polymorphism as an age-dependent predictor for risk of ACEI-related cough

    Chromosome 7 and 19 Trisomy in Cultured Human Neural Progenitor Cells

    Get PDF
    BACKGROUND:Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations. METHODS AND FINDINGS:While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC(+7)) and trisomy 19 (hNPC(+19)), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC(+7) and hNPC(+19) cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (beta(III)-tubulin) in hNPC(+7) and hNPC(+19), using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50-60 population doublings and never showed neoplastic changes. Although hNPC(+7) and hNPC(+19) survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line. CONCLUSIONS:We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications

    Measurements of the branching fraction and polarization in B+->rho K-+(*0) decays

    Get PDF
    We present the results of a study of the charmless vector-vector decay B+->rho K-+(*0), based on 253 fb(-1) of data collected with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We obtain the branching fraction B(B+->rho K-+(*0))=[8.9 +/- 1.7(stat)+/- 1.2(syst)]x10(-6). We also perform a helicity analysis of the rho and K-* vector mesons, and obtain the longitudinal polarization fraction f(L)(B+->rho K-+(*0))=0.43 +/- 0.11(stat)(-0.02)(+0.05)(syst)

    Measurement of forward-backward asymmetry and wilson coefficients in B -> K(*)l(+)l(-)

    Get PDF
    We report the first measurement of the forward-backward asymmetry and the ratios of Wilson coefficients A(9)/A(7) and A(10)/A(7) in B -> K(*)l(+)l(-), where l represents an electron or a muon. We find evidence for the forward-backward asymmetry with a significance of 3.4 sigma. The results are obtained from a data sample containing 386x10(6) (B) over bar pairs that were collected on the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider

    Measurements of B decays to two kaons

    Get PDF
    We report measurements of B meson decays to two kaons using 253 fb(-1) of data collected with the Belle detector at the KEKB energy-asymmetric e(+)e(-) collider. We find evidence for signals in B+->(K) over bar K-0(+) and B-0-> K-0(K) over bar (0) with significances of 3.0 sigma and 3.5 sigma, respectively. (Charge-conjugate modes are included.) The corresponding branching fractions are measured to be B(B+->(K) over bar K-0(+))=(1.0 +/- 0.4 +/- 0.1)x10(-6) and B(B-0-> K-0(K) over bar (0))=(0.8 +/- 0.3 +/- 0.1)x10(-6). These decay modes are examples of hadronic b -> d transitions. No signal is observed in the decay B-0-> K+K-, and we set an upper limit of 3.7x10(-7) at 90% confidence level
    corecore